Power
Ramin Arjmandzadeh; Mahdi Banejad; Ali Akbarzadeh Kalat
Abstract
In conventional power systems, most of the power is produced by synchronous generators in the electric grid that have heavy and rotating rotors. As a result, there is an inherent inertia in the rotor of these generators. The presence of inertia in the grid prevents sudden frequency changes during imbalance ...
Read More
In conventional power systems, most of the power is produced by synchronous generators in the electric grid that have heavy and rotating rotors. As a result, there is an inherent inertia in the rotor of these generators. The presence of inertia in the grid prevents sudden frequency changes during imbalance situations, thus, the frequency stability of the grid is maintained. Today, with the increase of renewable energy sources that are usually connected to the network by power electronic equipment. Such resources do not have rotating materials, therefore, the overall inertia of the grid decreases and the stability of the system deteriorates. To solve the problem of lack of inertia in the power electronic-based grid, the notion of the virtual synchronous generator (VSG) technology has been introduced in recent years. This technology can imitate the behavior of traditional synchronous generators for inverters connected to the grid. In this way, the inverters connected to the grid act like a synchronous generator during imbalance. One of the problems associated with the converters-based microgrid is the existence of DC deviations and additional harmonics, which disrupt the work of the converters. Therefore, in this article, a third-order generalized integrator (TOGI) -based VSG for grid-connected inverters is employed so that the system stability is maintained in the conditions of additional harmonics and DC deviation. To show the effectiveness of the proposed method, time domain simulations have been performed in Simulink/MATLAB software. The results of the simulation verify the performance of the proposed method.
Power
Ali Morsagh Dezfuli; Mahyar Abasi; Mohammad Esmaeil Hasanzadeh; Mahmood Joorabian
Abstract
The utilization of distributed generation (DG) in today's power systems has led to the emergence of the concept of microgrids, in addition to changing the mode of generating and supplying the energy required for network electrical loads. When a microgrid operates in the island mode, energy generation ...
Read More
The utilization of distributed generation (DG) in today's power systems has led to the emergence of the concept of microgrids, in addition to changing the mode of generating and supplying the energy required for network electrical loads. When a microgrid operates in the island mode, energy generation sources are responsible for controlling the microgrid’s voltage and frequency. As the microgrid frequency is proportional to the amount of power generated by the DG, the microgrid requires a precise power-sharing strategy. Considering that DGs do not usually have stable output power despite the importance of power stability, the present paper addresses the voltage and frequency control of an islanded microgrid by considering the power generation uncertainties caused by disturbances and the varying power output of DGs. Given that the disturbance on the first DG's input current is 0.2 A, which is approximately 2.2% of the steady-state value, a simulation was performed, and it was observed that the maximum voltage variation of each bus in the worst case was 0.59% for the first bus and 0.53% for the second bus, which means that the controller could control the voltage and frequency values within the permissible range. If the controller is not used, the change in the frequency of each bus will be 10 times, and the voltage change will be 5 times as great as that of the case the controller is used.
Power
Narges Yousefi; Mahmood Joorabian; Mahyar Abasi
Abstract
An obstacle in managing economic dispatch is the integration of diverse factors such as pollution and heat. By introducing the price penalty coefficient, this class of two-objective problems is transformable to a single-objective form. The formulation considers various practical constraints of the system, ...
Read More
An obstacle in managing economic dispatch is the integration of diverse factors such as pollution and heat. By introducing the price penalty coefficient, this class of two-objective problems is transformable to a single-objective form. The formulation considers various practical constraints of the system, including non-smooth cost functions, the balance of production, demand, and losses, and the limitation of power generation by active generators. One of the fundamental difficulties in tackling these types of complex problems lies in the algorithms and solvers employed to identify optimal solutions for a range of operation problems. The rain optimization algorithm (ROA) has been utilized in this paper. ROA is derived from the inherent tendency of raindrops to seek out the lowest areas on the earth's surface. This algorithm possesses exceptional efficacy in resolving problems characterized by stringent constraints and is adept at circumventing local optima. To validate the proposed method for cost and emission reduction, the scheme under consideration has been developed using software on standard systems. The implementation of the scenarios has revealed that the limits of the power system have led to a decrease in the overall generation cost of fossil fuel generation units. In this article, the ROA algorithm managed to plan the production with an optimal cost of 38481.54 dollars in case 1, which obtained a more optimal value than all the compared algorithms. This reduction in cost is considered one of the triumphs of the optimization problems. The results showcased and juxtaposed in the software simulation verify the effective performance of the suggested approach in comparison to prior research.
Electronics
Alireza Khoshsaadat; Mohammad Abedini
Abstract
In this paper a new improved diode-based circuit is introduced for output voltage limiting of immittance-based constant current Load Resonant Converters (LRCs). The proposed Diode-based Voltage-Limiter (DVL) is very reliable and simple, and also has minimum number of components. Moreover, limiting values ...
Read More
In this paper a new improved diode-based circuit is introduced for output voltage limiting of immittance-based constant current Load Resonant Converters (LRCs). The proposed Diode-based Voltage-Limiter (DVL) is very reliable and simple, and also has minimum number of components. Moreover, limiting values are flexible and can be varied according to the design requirements. All of the positive characteristics of the LRC operation are preserved in this technique such as Zero Voltage Switching (ZVS) of the inverter switches and Zero Current Switching (ZCS) of the rectifier diodes. A 150W converter with 300kHz switching frequency is considered as a sample prototype. The circuit simulation is presented based on the real model of the semiconductor devices in the OrCAD environments to have maximum accordance with the real conditions. Simulation results demonstrate an accurate clamping ability of the output voltage for overload conditions without any characteristics variation.
Electronics
Daniel Kwegyir; Francis Boafo Effah; Daniel Opoku; Peter Asigri; Yoosi Hayford; Eliezer Owusu Boateng; Kwaku Kessey-Antwi; Nana Maryam Abdul-Bassit Munagah; Kelvin Worlanyo Tamakloe
Abstract
Piezoelectric energy harvesting from air conditioner compressors is a promising technology for generating renewable electricity. This study comprehensively compares the energy harvesting potential derived from mechanical vibrations in compressors across various air conditioner brands, harnessing piezoelectric ...
Read More
Piezoelectric energy harvesting from air conditioner compressors is a promising technology for generating renewable electricity. This study comprehensively compares the energy harvesting potential derived from mechanical vibrations in compressors across various air conditioner brands, harnessing piezoelectric systems. Initially, a data collection system rooted in Internet of Things (IoT) technology is employed to capture vibration signals from different branded air conditioner compressors. The acquired data undergoes pre-processing and is subsequently analyzed in MATLAB Simulink to gauge its energy harvesting potential through a piezoelectric framework. Notably, the maximum voltage harvested demonstrated strong positive correlations with both the compressor vibrational frequency (0.7892) and velocity (0.7855), emphasizing their role in determining available mechanical energy for conversion to electrical power. Furthermore, a moderate positive correlation (0.0659) was observed between the harvested voltage and the compressor's rated power, indicating its influence on energy conversion. An additional positive correlation (0.2839) between temperature and harvested voltage was attributed to the increased electrical conductivity of compressor materials at higher temperatures. Conclusively, the compressor's frequency and velocity emerged as primary determinants of the maximum voltage harnessed, with rated power having a less pronounced yet contributory effect. This research provides valuable insights for optimizing energy harvesting from air conditioner compressors, highlighting the pivotal role of operational parameters.
Power
Sajed Derakhshani Pour; Reza Eslami
Abstract
In the last few years, there has been growing attention to isolated DC microgrids (MGs) with robust voltage control and efficient responding to demand in the face of fluctuating demands and supply amounts. This attention is due to significant voltage mismatches originated ...
Read More
In the last few years, there has been growing attention to isolated DC microgrids (MGs) with robust voltage control and efficient responding to demand in the face of fluctuating demands and supply amounts. This attention is due to significant voltage mismatches originated from the sudden transitions of the load demand and the active power of the supplies such as photovoltaic (PV) systems. To address these goals, a novel nonlinear robust voltage control strategy with a cascaded design consisting of proportional-integral (PI) and sliding mode control (SMC) techniques is developed in this research for the battery energy storage system (BESS). Additionally, this research considers a fuel cell as another power supply in addition to a solar PV system. For maximum power point tracking (MPPT) of the PV system, a novel backstepping sliding mode control (BSMC) technique is developed as well. The effective functioning of the suggested cascaded control strategy is examined using MATLAB/Simulink. The outcomes of the simulation represent the effectiveness of the proposed approach in robustly regulating the voltage level of the DC link at 50 V with small deviations in tracking, and quick reaction to fluctuations in both demand and supply sides, as well as guaranteeing an evenly-distributed responding to demand fluctuations from the DC MG.