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Abstract: Renewable energy sources are particularly important in clean energy transitions and must be 

considered in Generation Expansion Planning (GEP) problems due to low cost, ease of installation, and ability 

to implement Demand Response (DR) programs. However, challenges such as the stochastic nature of 

renewable energy sources, consumer unawareness regarding participation in DR programs, and difficulties 

in integrating some resources have posed challenges to the use of these resources in the GEP problem. This 

paper addresses these challenges by using the Weibull distribution function to model wind power plants' 

uncertainty and rewards and penalties to motivate consumer participation in the GEP problem. To achieve 

these objectives, initially, the adequacy assessment of the generation system is performed analytically using 

the reliability index, which includes Expected Energy Not Supplied (EENS), considering the forced outage 

rate of generators in the DIgSILENT power factory through Python programming. Subsequently, an 

optimized GEP model is presented to enhance the generation system's adequacy against short-term demand 

for the next year. In this model, wind farms and the DR program are integrated and optimized using the 

genetic algorithm, employing Python programming. The genetic algorithm selects the number of existing 

turbines in the wind power plant and the level of consumer participation needed to reduce the EENS to the 

desired value at the minimum cost. Validation of the proposed model is conducted on a 9-bus network. The 

strength of the presented method lies in its applicability to real-world networks modeled in the DIgSILENT 

Power Factory. 
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1. INTRODUCTION 

Electricity as one of the vital energy sources plays a 

significant role in meeting the daily needs of modern society 

and ensuring the future development of humanity. Given this 

issue, the generation segment of the power system must have 

sufficient capacity to meet the load demand at any given 

moment to ensure the reliability of the power system [1]. To 

achieve reliable generation for the demand sector, it is 

necessary to first assess the adequacy of the generation 

network to obtain information about its capability to meet the 

demand load for the desired horizon (e.g., short-term, such as 
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the upcoming year). After obtaining sufficient information, a 

Generation Expansion Planning (GEP) model is employed to 

address production shortages [2]. In this regard, it is 

preferable to utilize renewable energy sources and/or demand 

response programs in the GEP model, as both are proposed 

solutions for environmental sustainability in the future [3, 4]. 

The deployment of renewable resources and demand 

response (DR) programs, due to their environmental benefits, 

lower costs, and rapid implementation capabilities in short-

term horizons, is a highly suitable solution for balancing 

generation and consumption. However, it comes with 

challenges that require special attention. Failure to address or 

adequately model these challenges may result in additional 

costs or network outages [4, 5].  Regarding wind energy 

utilization, wind speed exhibits random and variable behavior. 

Additionally, people lack the necessary awareness to 

participate in the generation sector in DR programs. 

Therefore, the use of these resources in generation 

development planning faces challenges that must be 

addressed with appropriate methods [6-8].  

Another challenge facing power system planners is the 

large-scale dimensions of power grids, which complicates the 

optimization of generation planning considering practical 

parameters and constraints. In such cases, simplifications are 

employed, and results are extracted [9]. If a method can be 

implemented on industrial software where the entire power 

grid at the national or regional level is fully modeled, more 

realistic results can be provided, thereby reducing future 

challenges and additional costs imposed on the network. The 

efficiency indices of power generation can be calculated 

using deterministic or probabilistic methods. As renewable 

energy sources and flexible load demand increase gradually, 

the priority has shifted from deterministic methods to 

probabilistic ones [10].  Probabilistic methods for assessing 

adequacy indices are divided into two main approaches: 

analytical methods and Monte Carlo simulation. Power 

system adequacy is determined based on the actual presence 

of power generation units when they are available and capable 

of generating electricity, as well as during failures or 

unplanned outages [11]. For adequacy evaluation, the 

analytical method, if conducted using precise and appropriate 

models, can provide accurate results with power generation 

adequacy indices. On the other hand, the Monte Carlo 

simulation method requires a large number of iterations to 

achieve more accurate results and typically demands 

significant computational time, especially when applied to 

large-scale systems [12]. Therefore, adequacy assessment and 

generation expansion planning are vital components of the 

energy infrastructure for modern society, and if not properly 

evaluated and planned, society will face serious challenges. 

In reliability assessment, the study of generation adequacy 

focuses on the system's ability to meet the requested load 

demand without considering the transmission line facilities 

and distribution system [13]. After evaluating the adequacy 

of the network, any future shortages should be addressed 

through generation expansion planning. In reference [14], the 

optimization problem of generation expansion planning has 

been modeled using the General Algebraic Modeling System 

(GAMS). The GEP problem involves determining the optimal 

investment in the generation network with various objectives 

such as maximizing profits, minimizing production costs, 

reducing outage costs, and increasing the share of renewable 

energy resources [15]. In [16], a mathematical model is 

presented for the optimal measurement of energy storage in 

GEP for old systems with high penetration of renewable 

energies to increase production.  Also in  [17]  wind turbine 

uncertainty and demand response are considered only for the 

transmission system and the production sector is not 

considered. Therefore, other suitable approaches can 

contribute to improving generation planning alongside the 

use of renewable sources to enhance short-term adequacy. 

These approaches not only reduce costs but also increase the 

flexibility in meeting the required load at any given moment. 

One of these solutions is peak load reduction, where Demand 

Response (DR) serves as a cost-effective resource, improving 

system adequacy [18, 19]. Furthermore, in  [20], demand 

response (DR) programs and renewable energy sources have 

been utilized to enhance network resilience in coping with 

potential disruptions to input energy carriers, only on a daily 

basis (one or a few days ahead), optimal planning has been 

performed. However, in the development of production 

studies, planning should be done annually (short-term, 

medium-term, long-term).  In [21], thermal generators with 

similar characteristics are clustered together using clustering 

techniques. Each cluster shares information among its 

members and exchanges power, enabling the improvement of 

power generation adequacy. Furthermore, in [22], energy 

shifting to periods with lower demand has been utilized to 

improve adequacy. To achieve this, battery systems are 

employed to store energy during low-demand periods using 

the Monte Carlo method. 

Based on the above statements, the efforts made by 

others to improve efficiency indicate that these resources 

alone are insufficient in increasing efficiency. Therefore, this 

article simultaneously utilizes two key sources, namely wind 

power plants and a DR program. To address the stochastic 

nature of wind speed, the Weibull distribution function has 

been employed to model the uncertainty of wind power plants. 

In addition, in the DR program, tools such as rewards are used 

to encourage consumer participation to participate with the 

production sector in the proposed GEP model. This model 

integrates wind power plant and DR program by using a 

genetic algorithm. The genetic algorithm works in such a way 

that what percentage of the contribution amount that the 

consumer can have, along with how many of the existing 

turbines of the wind power plant, can be chosen so that the 

EENS is reduced to the desired amount with the minimum 

cost. The proposed GEP model provides the most optimal 

mode to the planners so that the planners can make the right 

decision to increase the network adequacy in the present and 

short term.  

Furthermore, to ensure the practicality of the proposed 

method, the implementation approach of the proposed 

method on real-world networks modeled in the DIgSILENT 

software has been emphasized. 

As can be seen in Table 1, past works in the GEP model 

have not fully evaluated the production adequacy and only 

renewable resources have been used. But in this article, in the 

first step, the network adequacy has been investigated. Due to 

the high importance of Demand Response (DR) due to its 

cost-effectiveness and zero environmental pollution, it has 

been added to the GEP model alongside wind power plants. 

Additionally, in this paper, Python software and DIgSILENT  
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Table 1: Summary of reviewed articles. 

Reference 

Adequacy assessment Consider demand response Generation Expansion Planning 

EENS Solution method  

Using 

renewable 

energy source 

Optimization 

method 

[3]    * MILP 

[4]   *   

[11] * Analytical in Python    

[13]    * MILP 

[14]    * MILP 

[15]    * Gurobi 

[16]   *   

[17] *     

[18] *     

In this article * 

An Analytical with 

Python 

programming in 

DIgSILENT 

* * GA 

are linked to facilitate computational development. This 

capability is provided in any real industrial network. 

The organization of this paper is as follows: In Section 2, 

the research methodology is introduced. Section 3 describes 

the results and simulations. Section 4 discusses the 

conclusions. 

In summary, the innovations and contributions of this 

paper are as follows: 

1- This article evaluates generation adequacy using 

analytical methods with Python programming in 

DIgSILENT. 

2- Simultaneous use of wind power plant and load 

response programs to implement the generation expansion 

planning (GEP) to improve the adequacy of the generation 

system in the short term. 

3- The use of genetic algorithms in GEP . 

2. METHODOLOGY 

In this section, the formulation of indices for evaluating 

adequacy, uncertainty, and wind power generation capacity, 

as well as the development planning of the power plant, is 

presented. 

2.1. Modeling the Adequacy Evaluation Index 

In [21, 23], the reliability index (EENS), which is used to 

assess the adequacy of generation, has been examined. 

2.1.1. Expected energy not supplied (EENS) 

This index indicates the amount of energy that is not 

supplied by the electricity generation system in the event of a 

power outage. Energy non-supply can lead to significant 

damages and losses for customers and even society as a whole. 

The formula for calculating this index is based on the total 

expected energy that is not supplied under specific conditions 

and the probability of occurrence of these conditions, along 

with the unit of energy measurement and the number of 

specific conditions. By using this index, the amount of lost 

energy and the damages associated with power outages can 

be estimated and analyzed. 

𝐸𝐸𝑁𝑆 = 𝑇 ∗ ∑ 𝑐𝑖𝑝𝑖i∈S                                                          (1) 

In (1), 𝑐𝑖 represents the capacity that has a probability 𝑝𝑖 

of not being met within the time period T. 

2.2. Wind Power Plant Model 

2.2.1. Considering the uncertainty of the wind power plant 

with the Weibull distribution function 

The Weibull distribution is utilized to study and analyze 

wind characteristics at wind sites. This distribution is well-

suited to the wind speed distribution under specific conditions. 

Therefore, by using the Weibull distribution, the wind power 

generation at wind sites can be estimated, and wind 

characteristics can be investigated. The probability density 

function (PDF) of this distribution is as follows [24, 25]. 

𝑓𝑣(𝑣) =
𝑘

𝑐
(

𝑣

𝑐
)𝑘−1𝑒−(

𝑣

𝑐
)𝑘

                                                        (2) 

In (2), k represents the shape parameter, and c represents the 

scale parameter. 

2.2.2. The relationship between the output power of the 

wind power plant and the wind speed 

The relationship between the power output of wind 

turbines and wind speed is depicted in Fig. 1. The 

mathematical equation can be expressed as follows [26, 27]. 
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Fig. 1: Power curve vs. wind speed curve showing the 

overall cost of wind turbines in a wind farm per year. 

 

𝑃𝑇={

0                                  0 ≤ 𝑉 ≤ 𝑉𝐼

(𝐴 + 𝐵𝑉 + 𝐶𝑉2) ∗ 𝑃𝑅   𝑉𝐼 ≤  𝑉 ≤ 𝑉𝑅    
𝑃𝑅                                   𝑉𝑅 ≤ 𝑉 ≤ 𝑉𝑂

0                                        𝑉 ≥ 𝑉𝑂

                        (3) 

In (3), V represents the wind speed variable, 𝑉𝐼 is the cut-

in speed at which the wind turbine begins generating 

electricity, 𝑉𝑅  is the rated speed at which the wind turbine 

produces maximum power, 𝑃𝑅 is the rated power of the wind 

turbine, and 𝑉𝑂 is the cut-out speed, beyond which the wind 

turbine stops and does not generate any power. 

The constants A, B, and C are obtained using the following 

equations: 

𝐴 =
1

(𝑉𝐼−𝑉𝑅)[𝑉𝐼+𝑉𝑅)−4(𝑉𝐼𝑉𝑅)(
𝑉𝐼+𝑉𝑅

2𝑉𝑅
)3]

                                      (4) 

𝐵 =
1

(𝑉𝐼−𝑉𝑅)2 [4(𝑉𝐼 + 𝑉𝑅)(
𝑉𝐼+𝑉𝑅

2𝑉𝑅
)3 − 3(𝑉𝐼 + 𝑉𝑅)]               (5) 

𝐶 =
1

(𝑉𝐼−𝑉𝑅)2 [2 − 4(
𝑉𝐼+𝑉𝑅

2𝑉𝑅
)3]                                              (6) 

2.3. Power Plant Development Planning 

2.3.1. Objective function 

The total cost (𝐶𝑡𝑜𝑡𝑎𝑙 ), which is used as an objective 

function to reduce costs (wind turbine, expected energy not 

supplied, demand response), is expressed as the main 

objective as follows: 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑤𝑡 + 𝐶𝐸𝑁𝑆 + 𝐶𝐷𝑅                                                 (7) 

2.3.2. Cost Model for Wind Farm 

To calculate the cost of wind turbines in a wind farm, a 

cost model introduced in [28, 29] is employed. In [28], the 

model assumes that with an increase in the number of turbines 

(𝑛𝑤𝑡), the cost per year for the turbines decreases, and the 

maximum reduction reaches one-third of the turbine cost. 

(𝐶𝑜𝑠𝑡𝑦) represents the cost of one wind turbine per year. 

Cost=𝑛𝑤𝑡 (
2

3
+

1

3
e−0.00174𝑛𝑤𝑡

2
)                                           (8) 

Costtotal = Costy × Cost                                                   (9) 

2.3.3. Energy Not Served Cost 

A generating unit may experience outage due to 

unforeseen failures, referred to as Forced Outage Rate (FOR). 

This rate represents the percentage of time that a generating 

unit is unavailable due to unexpected failures. Due to the 

forced outage rate of generating units and based on demand 

and available reserves, a portion of the energy demand may 

not be met. This portion is referred to as Energy Not Supplied 

(ENS). Its formula is as follows: 

𝐶𝐸𝑁𝑆 = ∑ 𝐶𝑜𝑠𝑡𝐸𝑁𝑆𝑡
𝑇
𝑡=1 × 𝐸𝑁𝑆𝑡                                         (10) 

2.3.4.  Demand Response Cost  

In the demand response cost formula 𝐶𝐷𝑅 represent the 

amount of power that consumers can actively participate in 

demand response management. This amount is typically 

expressed as a percentage of the total consumed load. Here, 

𝐷𝑅𝑙𝑒𝑣𝑒𝑙 indicates the amount of power that consumers can 

reduce in a participatory manner, up to 30% of their load or 

equivalently, the capacity that is saved through consumer 

participation in demand reduction. 

In this context, 𝐶𝑜𝑠𝑡𝐷𝑅 represents the cost per megawatt 

of reduced power that the electricity producer receives from 

consumers' participatory reduction. Therefore, the set of costs 

𝐶𝐷𝑅 in this formula represents the expenses related to 

consumer participation in load management and power 

reduction. 

𝐶𝐷𝑅 = 𝐶𝑜𝑠𝑡𝐷𝑅 × 𝐷𝑅𝑙𝑒𝑣𝑒𝑙 × 𝐿𝑜𝑎𝑑𝑝𝑒𝑎𝑘                              (11) 

2.3.5. The decision variable  

In this article, the decision variables in power plant 

development planning include the number of wind turbines 

(𝑛𝑤𝑡) and the level of consumer participation (𝐷𝑅𝐿𝑒𝑣𝑒𝑙) in the 

power generation network. 

2.3.6. Constraints in the problem 

The power range of wind turbines (𝑝𝑤𝑡) and the demand 

response level (𝐷𝑅𝐿𝑒𝑣𝑒𝑙) are constrained by (12) and (13), and 

the reliability model range in (14) is provided. 

   𝑝𝑤𝑡 ≤ 𝐿 × 𝑃𝑒𝑎𝑘𝐿𝑜𝑎𝑑                                                      (12) 

  𝐷𝑅𝐿𝑒𝑣𝑒𝑙 ≤ 𝑛 × 𝑃𝑒𝑎𝑘𝐿𝑜𝑎𝑑                                                (13) 

  𝐸𝐸𝑁𝑆 ≤ 𝐸𝐸𝑁𝑆𝑚𝑎𝑥                                                         (14) 

2.4. Proposed Methodology Flowchart 

The generation of the GEP model's performance 

flowchart is depicted in Fig. 2. This model, informed by the 

adequacy assessment data, evaluates the system's capacity to 

meet the demanded load. Employing a genetic algorithm in 

Python, it strives to balance generation and demand in the 

short term (next year) by integrating wind energy and demand 

response programs.
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Fig. 2: Flowchart of the proposed GEP model. 

 

3. RESULTS AND SIMULATION 

In this section, the examination of the given data 

(including network type, generators, required software, and 

system specifications) and simulation for validating the 

proposed method have been addressed. 

3.1. Introduction of Test Network and Production 

System Model 

Using the analytical method, the adequacy of generation 

units has been evaluated under normal conditions (without 

forced outages) and based on their forced outage rates. Only 

generation units and loads are considered in the adequacy 

assessment, while transmission lines and distribution 

networks are not taken into account. In this paper, the IEEE 

9-bus test system with a peak load of 900 megawatts (Fig. 3) 

has been utilized in DIgSILENT. The generators in the 

network under study are listed in Table 2. 

 

Fig. 3: The 9-bus test network model in DIgSILENT 

Table 2: Generator specifications and their forced outage 

rates 

Generating Unit 
Generating 

Capacity (MW) 

Forced Outage 

Rate (FOR) 

G1 202 0.04 

G2 200 0.02 

G3 250 0.01 

 

3.2. Required Software and Systems 

Simulations were conducted using Python in the system 

whose specifications are provided in Table 3 for the short 

term (one year). 

3.3. Simulation Results Related to Adequacy 

3.3.1. The value of Expected Energy Not Supplied (EENS)  

The load duration curve consists of three parts (base, 

intermediate, and peak load), as shown in Fig. 4, where all 

power plants are online but the generation network still has a 

shortfall of 248 megawatts. The unmet energy is examined in 

Table 4 for both cases of no generator outages and individual 

generator outages. 
 

𝐸𝑁𝑆 = 𝑡 ×
1

2
(𝐿𝑜𝑎𝑑𝑃𝑒𝑎𝑘 − 𝑃𝑜𝑤𝑒𝑟𝑙𝑒𝑣𝑒𝑙) = 47.310769 

𝐸𝐸𝑁𝑆 = 𝐸𝑁𝑆 ∗ 𝑞1𝑞2𝑞3 = 44.06487198 (MWh/Year) 
 

Table 3: System specifications 

System Model P553UJ 

Processor Intel(R) Core (TM) i5-6198DU CPU@ 

2.30GHZ (4CPUS), ~2.4GHZ 

Memory 819MB RAM 
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Fig. 4: Load continuity curve in terms of perionite. 
 

Table 4: Results of expected energy not served for the initial network.
 

Out of capacity (ci)  
in MW 

Probability (pi) ti EENS i = ti ∗ ∑ cipi

i∈S

 

0 0.96× 0.98 × 0.99 =
0.931392 

0.38153546 44.0648719754 

202 0.04 × 0.98 × 0.99
= 0.038808 

0.69230769 5.427143327 

200 0.96× 0.02 × 0.99 =
0.019008 

0.68923076 2.620179657 

250 0.96× 0.98 × 0.01 =
9.408 × 10−3 

0.76615384 1.801993832 

   ∑ EENSi = 54.8393514092 

 

.

 

Fig. 5: Average annual power of each wind turbine considering wind speed uncertainty. 
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3.4. Results of the Wind Power Plant 

Wind speed data has been collected by a meteorological 

station. Considering the specifications of the wind turbine 

provided in Table 5, the average annual power of each wind 

turbine (pwt ) has been obtained, taking into account the 

uncertainty of wind speed with the Weibull distribution 

function as shown in Fig. 5. Its value is equal to 0.9 MW. 

3.5. Data Related to the Generation Development  

In this section Table 6, the information regarding the 

wind turbine, including the wind turbine investment cost 

(𝐶𝑜𝑠𝑡𝑦), energy not served cost (𝐶𝑜𝑠𝑡𝐸𝑁𝑆𝑡
), demand response 

(𝐶𝑜𝑠𝑡𝐷𝑅), is provided. 

3.6. Simulation Results 

Simulation in a 9-node network, as depicted in Fig. 3, has 

been conducted as follows: 

First, the network adequacy in the current state is 

evaluated in scenarios with and without the generator's exit. 

Based on this evaluation, the Expected Energy Not Supplied 

(EENS) is determined. Therefore, after gathering information 

about the current state of the network, necessary measures 

have been taken to improve and enhance the network 

adequacy in the current and short-term periods. These actions 

have been carried out using the proposed GEP model, as 

shown in Fig. 2. The model integrates wind power plant and 

Demand Response (DR) program using the genetic algorithm. 

The genetic algorithm considers two factors: firstly, Table 6 

which includes three costs (the reward cost given to 

consumers for participation, the installation cost of each wind 

turbine, and the cost of unsupplied energy); and secondly, the 

maximum participation power of the consumer, which is 83% 

higher than the total participation power of wind turbines. In 

the proposed GEP model, the genetic algorithm operates by 

determining what percentage of consumer participation, 

along with how many of the existing wind turbines in the 

wind power plant, should be selected to reduce the EENS to 

 

Table 5 :Wind turbine specifications. 

Technical specifications of the 2-megawatt Samen (AV928) wind 

turbines under license of the Avantis Energy Germany. 

Startup speed 3m/s 

Rated speed 9m/s 

Cut-off speed 20m/s 

  

Table 6: Costs (wind turbine, EENS, and demand response) 

𝑪𝒐𝒔𝒕𝒚 1624000 ($/MW)/25 

𝑪𝒐𝒔𝒕𝑬𝑵𝑺𝒕
 5.5*1000*8760 ($/MWh) 

𝑪𝒐𝒔𝒕𝑫𝑹 2*1000*8760 ($/MWh) 

the desired level with minimum cost. The results in Table 7 

show information about various scenarios of consumer 

participation along with the participation of wind turbines, 

along with the costs associated with these scenarios. And the 

reduced EENS values resulting from these participations are 

displayed in Table 8. In Table 8, the first column indicates the 

number of generator outputs, where column A represents the 

amount of power shortage in the current network state 

without generator outputs, and G1  to G2  are the generators 

removed from the network. The EENS results in Table 8 are 

presented under two conditions. 𝐸𝐸𝑁𝑆1  to 𝐸𝐸𝑁𝑆9 

correspond to participation scenarios, and 𝐸𝐸𝑁𝑆10 represents 

the scenario without participation. In the power generation 

system, the baseline load is set equal to the capacity of the 

generator that exceeds that of the other generators. In this 

regard, the maximum total participation of consumers and 

wind power plant is set to be greater than or equal to the 

capacity of the fixed generator G3, which produces more 

power compared to generators G1 and G2 ( 𝑃𝑔𝑒𝑛𝑚𝑎𝑥
≤

𝑃𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) . In Table 7, the total power of 

participations corresponding to scenarios 1 to 5 fails to meet 

this condition. The results in Table 8 (𝐸𝐸𝑁𝑆1  to 𝐸𝐸𝑁𝑆5 ) 

indicate that, considering the participation limits set in 

scenarios 1 to 5, the combination of maximum consumer 

participation along with wind turbines by the genetic 

algorithm within this range does not satisfy the condition 

( 𝐸𝐸𝑁𝑆𝑖 ≤ 4 MWh ). However, the total power of 

participations corresponding to scenarios 6 to 9 satisfies the 

condition (𝑃𝑔𝑒𝑛𝑚𝑎𝑥
≤ 𝑃𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛). The results in 

Table 8 (𝐸𝐸𝑁𝑆6  to 𝐸𝐸𝑁𝑆9 ) indicate that, considering the 

participation limits set in scenarios 6 to 9, the combination of 

consumer participation with wind turbine participation by the 

genetic algorithm within these ranges satisfies the condition 

( 𝐸𝐸𝑁𝑆𝑖 ≤ 4 MWh ). The costs associated with these 

participations in Fig. 7 indicate that they are higher compared 

to the EENS cost in a year without participation. To ensure 

that participation in the production sector is profitable, 

considering that the consumer participation cost is 

significantly higher compared to the wind turbines, it has 

been reduced by 42.5%.  Based on the new cost for consumer 

participation, Table 9 re-evaluates the participation scenarios 

corresponding to scenarios 6 to 9 that satisfy the condition 

( EENSi ≤ 4MWh ). The proposed model selects the best 

participation mode for each constraint based on their 

participation scenarios with the minimum cost, and Table 10 

displays the EENS values related to the new participations 

where the condition (EENSi ≤ 4MWh) is satisfied.  In Table 

9, the participation range (n=46, i=23) determined by the 

proposed GEP model is the optimal mode. Considering the 

newly obtained EENS values (shown in Fig. 6 and Table 10), 

it can be observed that the condition (3.91MWh ≤ 4MWh) is 

satisfied with the minimum cost within this range. In scenario 

2, power production is more profitable compared to other 

scenarios in Table 9. The costs of all scenarios are compared 

in Fig. 7.
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Table 7 : Comparison table of the results of the participation of the number of wind turbines next to the participation of the 

consumer, considering the total costs for improving the adequacy of the electricity generation system 

Scenario 𝑃𝑔𝑒𝑛𝑚𝑎𝑥
(MW) 

 

𝑃𝑔𝑒𝑛𝑚𝑎𝑥
(MW) 

≤ 𝑃𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

𝑃𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(MW) 

= ( n× 𝑃𝑤𝑡) +

(𝐷𝑅𝑙𝑒𝑣𝑒𝑙𝑖
× 𝐿𝑜𝑎𝑑𝑝𝑒𝑎𝑘) 

Acc. to (12) and (13) 

The maximum number of 

turbines (n) and the maximum 

load participation percentage (i) 

Total cost Number 

of wind 

turbines 

Consumer  

participation 

percentage 

1 

 

 

 

 
 

 

 

 
 

 

250 

9+90=99 
n = 10 

i = 10% 
2878713513 10 10 

2 27+90=117 
n = 30 

i = 10% 
2711209422 30 10 

3 18+180=198 
n = 20 

i = 20% 
3541154965 20 20 

4 27+180=207 
n = 30 

i = 20% 
3498372560 30 20 

5 45+180=225 
n = 50 

i = 20% 
3426020585 50 20 

6 27+270=297 
n = 30 

i = 30% 
4041727163 29 24.4 

7 45+270=315 
n = 50 

i = 30% 
3933851414 47 23 

8 9+270=279 
n = 10 

i = 30% 
4294743428 9 26 

9 18+270=288 
n=20 

i=30% 
4295942587 16 26.11 

 
 

 

 

Table 8: EENS results considering wind turbines and demand response. 

 

Table 9: Comparison table of the results of the participation of the number of wind turbines next to the participation of the 

consumer, considering the total costs for improving the adequacy of the electricity generation system (Based on the new cost 

of consumer participation). 

Scenario 𝑃𝑔𝑒𝑛𝑚𝑎𝑥
(MW) 

 

𝑃𝑔𝑒𝑛𝑚𝑎𝑥
(MW)

≤ 𝑃𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

𝑃𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(MW) 

= ( n× 𝑃𝑤𝑡) + (𝐷𝑅𝑙𝑒𝑣𝑒𝑙𝑖
×

𝐿𝑜𝑎𝑑𝑝𝑒𝑎𝑘) 

Acc. to (12) and (13) 

The maximum number of 
turbines (n) and the 

maximum load participation 

percentage (i) 

total cost Number 
of wind 

turbines 

Consumer  
participation 

percentage 

1 

 
 

 

250 

27+270=297 
n = 30 

i = 30% 
2486809821 29 25.4 

2 45+270=315 
n = 50 

i = 30% 
2279302873 46 23 

3 9+270=279 
n = 10 

i = 30% 
2551641219 9 26 

4 18+270=288 
n=20 

i=30% 
2573663747 18 26 

 

 

 

Generator 

exited   

Capacity 

outed  

(MW) = 

𝐂𝐢 

𝑬𝑬𝑵𝑺𝟏 𝑬𝑬𝑵𝑺𝟐 𝑬𝑬𝑵𝑺𝟑 

 

𝑬𝑬𝑵𝑺𝟒 𝑬𝑬𝑵𝑺𝟓 𝑬𝑬𝑵𝑺𝟔 𝑬𝑬𝑵𝑺𝟕 𝑬𝑬𝑵𝑺𝟖 𝑬𝑬𝑵𝑺𝟗 𝑬𝑬𝑵𝑺 𝟏𝟎 

(𝐌𝐖𝐡)
= 𝒕𝒊

∗ ∑ 𝒄𝒊𝒑𝒊

𝐢∈𝐒

 

𝑬𝑬𝑵𝑺 𝒊
≤ 𝑬𝑬𝑵𝑺𝒎𝒂𝒙 

A A (No 
exit 

gen)=248 

19.14 16.06 2.92 2.22 1.08 0.056 0 0.0002 0.0016 44.064  

A,G1 G1=202 23.51 20.18 5.70 4.88 3.52 2.12 1.96 1.97 1.98 50.109  

A,G1, G2 G2=200 25.62 22.18 7.04 6.17 4.70 3.12 2.9 2.92 2.94 53.044  

A,G1, G2, G3 G3=250 26.99 23.48 7.99 7.09 5.56 3.88 3.63 3.65 3.67 54.839 𝐸𝐸𝑁𝑆 𝑖
≤ 4MWh 
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Table 10: EENS results considering wind turbines and demand response (Based on the new cost of consumer participation). 

 

Fig. 6: EENS results for different modes (Based on the new cost of consumer participation). 

 

Fig. 7: Comparing the results of the participation costs of the proposed GEP model with the EENS cost in the non-participation 

mode in a year. 

 

4. Conclusions 

In this article, a proposed GEP model has been utilized 

to enhance network adequacy in the current and short-term 

periods. Therefore, in this regard, considering Table 6 where 

the consumer participation cost exceeds the wind turbine 

installation cost, and furthermore, the maximum power of 

consumer participation exceeds the total power of wind 

turbines in the wind power plant by 83%, the results should 

favor maximal wind turbine participation, given their lower 

0
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20

30

40

50

60

0 0.06 0.05 0

44.064

1.93 2.15 2.13 1.92

50.109

2.86 3.15 3.13 2.84

53.044

3.58 3.91 3.89 3.56

54.839

M
W
h

A A(No exit gen) A,G1 G1=202 A,G1,G2 G2=200 A,G1,G2,G3 G3=250

Generator 

exited   

Capacity outed  

(MW) = 𝐂𝐢 

𝑬𝑬𝑵𝑺𝟏 𝑬𝑬𝑵𝑺𝟐 𝑬𝑬𝑵𝑺𝟑 

 

𝑬𝑬𝑵𝑺𝟒 𝑬𝑬𝑵𝑺 𝟓 

(𝐌𝐖𝐡) = 𝒕𝒊 ∗ ∑ 𝒄𝒊𝒑𝒊

𝐢∈𝐒

 

𝑬𝑬𝑵𝑺 𝒊 ≤ 𝑬𝑬𝑵𝑺𝒎𝒂𝒙 

A A (No exit 
gen)=248 

0.0 0.06 0.05 0.0 44.064  

A,G1 G1=202 1.93 2.15 2.13 1.92 50.109  

A,G1, G2 G2=200 2.86 3.15 3.13 2.84 53.044  

A,G1, G2, G3 G3=250 3.58 3.91 3.89 3.56 54.839 𝐸𝐸𝑁𝑆 𝑖 ≤ 4MWh 
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costs, compared to maximal consumer participation. The 

impact of these higher costs and increased consumer power 

can be observed in Tables 7 and 8. where scenarios of 

participation that meet the condition (𝐸𝐸𝑁𝑆𝑖 ≤4MWh) are 

depicted, however, the costs in these participations, as shown 

in Fig. 7, are high. In order to ensure profitability in the 

production sector, the consumer participation cost has been 

reduced by 42.5%. The results obtained in Tables 9 and 10 

indicate that the condition (𝐸𝐸𝑁𝑆𝑖  ≤ 4 MWh) has been met, 

as shown in Fig. 6. The associated costs are shown in Fig. 7, 

which demonstrate a reduction compared to the EENS cost in 

a year without participation. The optimal participation mode, 

as determined by the proposed GEP model while considering 

the condition (𝐸𝐸𝑁𝑆𝑖  ≤ 4MWh) with minimum cost within 

the range (n=46, i=23%), results in a 13.73% reduction in 

participation cost compared to the EENS cost in a year 

without participation. 
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