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Abstract: An obstacle in managing economic dispatch is the integration of diverse factors such as pollution and heat. By 

introducing the price penalty coefficient, this class of two-objective problems is transformable to a single-objective form. 

The formulation considers various practical constraints of the system, including non-smooth cost functions, the balance 

of production, demand, and losses, and the limitation of power generation by active generators. One of the fundamental 

difficulties in tackling these types of complex problems lies in the algorithms and solvers employed to identify optimal 

solutions for a range of operation problems. The rain optimization algorithm (ROA) has been utilized in this paper. ROA 

is derived from the inherent tendency of raindrops to seek out the lowest areas on the earth's surface. This algorithm 

possesses exceptional efficacy in resolving problems characterized by stringent constraints and is adept at circumventing 

local optima. To validate the proposed method for cost and emission reduction, the scheme under consideration has been 

developed using software on standard systems. The implementation of the scenarios has revealed that the limits of the 

power system have led to a decrease in the overall generation cost of fossil fuel generation units. In this article, the ROA 

algorithm managed to plan the production with an optimal cost of 38481.54 dollars in case 1, which obtained a more 

optimal value than all the compared algorithms. This reduction in cost is considered one of the triumphs of the 

optimization problems. The results showcased and juxtaposed in the software simulation verify the effective performance 

of the suggested approach in comparison to prior research.  
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 Nomenclature 
 

 

  

Variables Description Variables Description 

𝑭𝒊 i-th power plant fuel cost 𝑛 Number of power plants 

𝑭𝒄𝒐𝒔𝒕 Total power plant fuel cost 𝑒i, 𝑓𝑖 
Return coefficients of knee points of i-th power 

plant cost 

 𝒂𝒊, 𝒃𝒊, 𝒄𝒊, 𝒅𝒊 Cost coefficients of i-th power plant 𝐵ij ,  𝐵oi ,  𝐵oo Transmission line loss function coefficients 

 𝑷𝒅 System consuming power ℎ𝑖 Utilization factor 

𝑷𝑳 Transmission line loss 𝜑𝑇 The value of the balance coefficient 

𝑷𝒊.𝒎𝒊𝒏 Minimum admissible power generation in i-

th power plant 𝑤1 , 𝑤2 Wight coefficient 

𝑷𝒊.𝒎𝒂𝒙 Maximum admissible power generation in i-

th power plant 
𝐸cost Total power plants pollution amount 

𝜶 drop percentage volume that can be 

absorbed, depending on the soil property 
𝛽𝑖  . 𝛾𝑖  . 𝑐𝑖  . 𝜆𝑖 power plants pollution coefficient 
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Variables Description  Variables Description 

𝑴 Daily hours 

 

𝑃𝐺 
Power plants total power generation based on 

pollution power flow 

𝒎 An hour of the day and night 𝑟1 𝑎𝑛𝑑 𝑟2 Drop radius 

𝐔𝐑𝐢 Maximum ramp rate 𝑅 Total radius 

𝑬𝒄𝒐𝒔𝒕 Total power plant emission cost  DRi Minimum ramp rate 

B Inequality constraints  A Constraints of equality 

PS Pattern Search  V Valve-point loading effects 

L Transmission line losses  N Voltage limits 

R Ramp rate  P Prohibited Operating Zones 

LR Lagrange relaxation  T Start time limit 

LI Lambda Iteration  BBO Biogeography-based optimizer 

MHBA 
Hybridizing bat algorithm with artificial bee 

colony 
 GA–WOA 

Genetic algorithm-whale optimization 
algorithm 

QP Quadratic Programming  DE-CQPSO 
Differential evolution-crossover quantum 

PSO 

NR Newton-Raphson  IABC Incremental artificial bee colony 

ANN Artificial Neural Networks  CBBO Improved biogeography-based optimization 

AHNN Adaptive Hopfield neural network  GA Genetic algorithm 

DHS Differential harmony search method  PSO Particle swam optimization 

HPSO-GSA 
Hybrid Particle swam optimization and 

Gravitational search algorithm 
 DE Differential evolution 

JAYA–TLBO 
JAYA and Teaching learning-based 

optimization 
 DE-BBO 

Differential evolution-Biogeography-based 

optimizer 

   

1. INTRODUCTION 

1.1. Research motivation 

Industrialized nations have endeavored to substitute 

renewable energies for fossil fuels since the 19th century, 

driven by concerns over air pollution, climate change, and 

escalating fuel expenses. The studies on power system 

operation indicate that the concern of economic-emission 

dispatch (EED) is focused on efficiently supplying the 

anticipated generation for loads while maintaining a balance 

between generation and demand. The utilization of 

contractive methods typically yields favorable outcomes. 

However, when the research space becomes non-linear and 

non-continuous, the problem-solving process gets highly 

intricate and the convergence of this strategy to find the 

ideal solution occurs at a notably slow pace. One of the 

issues that is important for the power grid today is the cost 

of production, but with international commitments, the 

issue of reducing pollutant emissions has also become one 

of the concerns of producers. Therefore, manufacturers 

should think of a method for cheap production and at the 

same time without producing pollution. One of the solutions 

that can help to solve this problem is the optimal planning 

of the production of power plant units. Various methods 

have been proposed to solve these problems. In general, 

these methods are divided into three categories: classical, 

meta-heuristic and artificial intelligence. Among them, 

artificial intelligence and meta-heuristic methods are more 

popular than classical methods due to their speed and 

accuracy. In this article, ROA meta-heuristic method is used 

to solve the EED problem. 

1.2. Research background and literature review 

The EED problem has been solved by various optimization 

methods based on numerical and metaheuristic methods, 

which have been briefly examined in this section. In 

general, these methods can be classified into three 

categories, which include classic or traditional, modern, and 

combined methods. The objective of optimization is to 

identify the optimal solution that meets the constraints and 

requirements of the problem. Multiple options may exist, 

and the ideal solution is chosen after conducting a thorough 

comparison. Traditional methods are generally based on 

iteration techniques, which face issues such as high number 

of iterations and huge calculations, and finally, even in 

different states of the system, there is a possibility of 

divergence. The other category is the new methods which 

are defined based on the search space and have subsets of 

stochastic, heuristic, metaheuristic, etc., where all possible 

solutions are examined and finally the best solution is 

selected. Yet, in multi-objective problems where the 

objective function is transformed into a single function with 

defined variables, and considering the need to correct the 

problems of the previous two methods, the combined 

method helps significantly in the optimization problem and 

ultimately leads to more accurate solutions. However, not 

all these methods can solve all the optimization problems 

with non-smooth, non-continuous functions in the nonlinear 

solution space with acceptable efficiency, considering that 

research space is evolving and innovating. In the following, 

articles related to the described methods are reviewed. 

Power plants use the process of energy conversion to 

produce electricity, and the main costs of electricity 
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production have roots in fuel costs. On the one hand, the 

ability to produce electricity with a high capacity is 

important, which can be achieved by using coal-fueled 

steam power plants. Moreover, reducing the negative 

effects on the environment is an issue that can be 

investigated. It is necessary to manage the system by 

optimizing the economic problem and reducing greenhouse 

gas emissions. In recent years, economic power distribution 

in systems has been the focus of researchers, but the 

problem of pollution caused by fossil fuels has not been paid 

special attention in these studies. In the proposed model, the 

problem will be transformed into an economic-emission 

multi-objective function, and in the same way, a new model 

of the said problem will be presented, where the 

optimization algorithm will be investigated to solve the 

economic power distribution problem by considering the 

pollution function in multi-area power systems, the general 

concept of which can be defined in different structures. 

Algorithms used are classified according to their results into 

traditional, modern, and combined methods, each of which 

has been investigated to solve the issues of the previous 

methods. To validate the efficacy and application of the 

suggested approaches, different test systems have been used 

under different practical conditions. Table 1 summarizes the 

widely used systems in power planning problems. 

 

• Review of conventional EED methods 

Conventional (traditional) techniques are among the 

common methods when it comes to solving the economic 

power/pollution problem. Among them are quadratic 

programming method, Newton-Raphson method, Lambda 

iteration, and Lagrangian relaxation [1-5]. The quadratic 

programming method was first developed [1-2] to deal with 

the economic dispatch problem by taking the line current 

limitations into account. The formulation of the problem 

with this method enables adopting a linear network model 

and operational constraints besides the explicit presentation 

of the costs exposed by transmission loss. After that, the 

Newton-Raphson technique was adopted [3] to address the 

economic dispatch problem by observing the same line 

current constraints. This method was formulated based on a 

Jacobian replacement matrix with transmission losses in 

terms of sensitivity factors, line current, and line resistance. 

The convergence of the mentioned method was achieved 

linearly with a very low speed. Next, the Lambda iteration 

technique was discussed [4] and implemented on 3, 6, 13, 

and 26-unit test systems. The method presented directly 

calculates the optimal value of Lambda for a certain power 

demand and is considered an efficient method for online 

information transmission. 

In that method, generator limitations and transmission 

line losses were considered as problem constraints to prove 

its efficiency. Among other traditional methods, one can 

mention the technique based on Lagrangian relaxation for 

the EED problem [5]. In this reference, limitation on the 

generator, line current, and transmission line losses were 

considered. To perform this dispatch, the operation point of 

the system and network losses are also considered in the 

optimization process.  

 

Table 1: Introducing the test systems adopted for solving 

the economic/emission dispatch problem. 

NUMBER OF THERMAL 

GENERATION UNITS 

TEST 

SYSTEM 

3- IEEE3 ELD Test system 1 

4- GENERATION Test system 2 

5- IEEE14 BUS Test system 3 

6- IEEE30 BUS Test system 4 

6- IEEE26 BUS Test system 5 

7- IEEE57 BUS Test system 6 

8- IEEE25 BUS Test system 7 

10- IEEE39 BUS Test system 8 

10- IEEE24 BUS Test system 9 

13- IEEE13 ELD Test system 10 

14 -GENERATION Test system 11 

15- GENERATION Test system 12 

19- IEEE118 BUS Test system 13 

20 GENERATION Test system 14 

26 GENERATION Test system 15 

30 GENERATION Test system 16 

38 GENERATION Test system 17 

40- IEEE13 ELD Test system 18 

54 GENERATION Test system 19 

57 GENERATION Test system 20 

69- IEEE300 BUS Test system 21 

110 GENERATION Test system 22 

120 GENERATION Test system 23 

140 GENERATION Test system 24 

Issues such as the limitation of generators, line current, 

voltage profile, line losses, etc. are considered in these 

methods for the EED problem and finding the best optimal 

solution [6]. By carefully examining the mentioned 

methods, it can be seen that all of them have a high 

dependence on the initial solutions and also have a weak 

convergence or finally converge with some local optima, 

even in some solutions, the solution diverges. Regrettably, 

this technique is also accompanied by two fundamental 

limitations. Firstly, this approach is unsuitable for resolving 

non-convex or non-linear problems. Secondly, due to the 

high calculation time and sometimes exponential 

calculation time, it was unable to effectively handle a 

significant amount of inequality constraints, and it 

controlled and improved only one solution in one run, 

failing to solve two-variable problems. 

•  Review of recent EED methods 

The methods that are included in this category are 

based on education-oriented, innovative, or meta-heuristic 

methods. Among the famous techniques of this category 

that were used for the EED problem are the methods of 

artificial neural networks, improved artificial bee colony 

optimization algorithm, improved biogeography 

optimization algorithm based on the Cauchy operator, the 

differential evolutionary optimization algorithm, the elitist 

multi-objective evolutionary optimization algorithm, and 

the particle swarm optimization algorithm [7-14]. Solving 

the economic dispatch problem by considering the 

piecewise quadratic cost function, based on the adaptive 

Hopfield artificial neural networks method, was proposed 

[7]. The method was tested on 3, 4, 40 and 120-unit test 

systems and its successful results confirmed the 

performance of the suggested scheme. An improved 

incremental artificial bee colony method was used to deal 
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with the EED problem by observing the constraints of 

generators and transmission line losses [8]. Based on the 

local search with better convergence efficiency, 

modifications to the classical artificial bee colony algorithm 

further improved the performance and provided near-

optimal solutions. In [9-10], the biogeography-based 

optimizer algorithm and improved biogeography-based 

optimization methods were presented to address the EED 

problem. In [9], the problem of the convex nonlinear cost 

function minimization was considered, where the voltage 

and current constraints of the transmission line were added 

to the problem constraints. In [10], based on the Cauchy 

operator with improved capabilities of local and global 

exploration and convergence rate, the biogeography 

optimization algorithm applied to the EED problem 

achieved more suitable results. In another study, the EED 

problem was addressed using a differential evolutionary 

optimization algorithm in the form of a multifaceted 

nonlinear problem [11]. The results of this technique 

showed that the solution converged on the local optimum 

and performed poorly for more complex calculations. The 

EED problem was presented [12-13] using the basic method 

of genetic optimization algorithm as well as its improved 

method in the form of an elitist multi-objective evolutionary 

algorithm. This technique provided possible solutions and, 

as a result, a more suitable Pareto optimal front than the 

multi-objective problem, which presented a better view of 

the solution space. Another stochastic optimization 

approach called particle swarm optimization was employed 

by [13]. This approach offers numerous benefits that are 

well-suited for non-convex optimization problems 

characterized by stringent constraints. The effectiveness of 

the suggested technique was assessed in a system consisting 

of 10 units, taking into account limitations on the generator, 

valve-point loading effects, and transmission losses. In 

another study, the economic-environmental dynamic 

dispatching problem including wind energy, solar 

photovoltaic, thermal and water power plants, taking into 

account the limits of slope rate limits and the influence of 

valve-point loading, was solved by adopting the multi-

objective particle swarm optimization [14]. 

• Review of combined EED methods 

In the combined methods, several algorithms are used to 

benefit their advantages and reduce their weaknesses in 

solving more complicated problems. So, they are impactful 

in finding global optimal solutions of economic 

power/pollution problems with different constraints. In 

[15], the combination of differential evolutionary and 

biogeographic algorithms was presented to solve the 

problem of EED of thermal power plants in power systems. 

The combination of both methods increased the accuracy 

and speed of the implementation results on the EED 

problem. In [16], the challenge of non-convex economic 

dispatching was solved by combining differential 

evolutionary mechanisms and harmony search algorithm. In 

that study, the proposed method was tested on 6, 10, 13, 15, 

24, and 40 generation units with constraints such as the 

effects of valve-point loading, multi-fuel, slope rate limits, 

and prohibited operating zones. In [17], a new combination 

of Java methods and teaching-learning-based optimization 

was utilized to solve the challenge of economic distribution 

in non-convex and non-smooth conditions. The method was 

tested and evaluated on 5, 10 and 40-unit systems. The 

accuracy and speed of the results compared to other 

methods were also examined. Reference [18] presented a 

combination of the non-dominant elitist sorting algorithm 

and a modified distance-crowding sorting method to obtain 

a Pareto optimal front with a uniform distribution for EED 

problem. In that reference, the slope rate limits and the 

prohibited operating ones were modeled on three standard 

IEEE 6, 19, and 57-unit systems to evaluate the proposed 

method. In [19], a method based on the combination of bat-

inspired algorithm and artificial bee colony with search 

strategy to solve large-scale, highly nonlinear, non-convex, 

non-smooth, non-differential, and non-continuous problems 

related to EED problem was introduced. In [20], a method 

composed of genetic algorithm and whale optimization was 

presented to obtain global optimal results for EED 

problems. The efficacy of this proposed methodology was 

examined on four distinct test systems and its performance 

was contrasted with other heuristic approaches. In [21], to 

solve the challenge of EED, a method relying on the 

combination of particle swarm optimization and time-

varying acceleration coefficient was proposed. 

The distribution of greenhouse gas emissions considered 

in this reference consisted of multi-objective optimization 

problems of combined economic-environmental 

dispatching of heat and power and dynamic economic-

environmental dispatching taking into account various 

operational limitations. The main theoretical solutions and 

innovations presented in that study proposed a new test case 

by observing the maximum practical limitations such as the 

limits of the slope rate, the prohibited operating zones, and 

the creation of a novel methodology to choose the most 

optimal compromise options and guarantee a diverse range 

of Parto solutions that are more suitable for economic-

environmental dynamic dispatch problems. And finally, a 

hybrid method called Differential Evolutionary Crossover 

Quantum Particle Swarm Optimization Algorithm was 

introduced [22] to deal with the EED problem. In that 

research, the authors took advantage of the rapid 

convergence of the differential evolutionary approach and 

the diversity of particles of genetic algorithm crossover 

operators. Table 2 summarizes the methods presented in the 

reviewed references. 

1.3. Contributions and novelty 

The contribution and innovation of this article is to 

solve EED problem based on rain optimization algorithm 

(ROA). In general, this article has two main contributions 

and objectives. The first objective is to formulate and solve 

the problem of economic dispatch combined with the 

pollution emission caused by the emission of greenhouse 

gases in fossil fuel power plants using the ROA method. 

The second objective is to consider the practical limitations 

in the EED problem. Since the cost function of a fossil fuel 

power plant is not smooth in practice and has knee-shaped 

points on the third curve, EED will be investigated 

considering this limitation. In summary, the innovations of 

this article are as follows: 
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• Solving the ED problem with two objective functions 

to reduce cost and pollutant 

• Using the new ROA algorithm to optimize the ED 

problem 

• Checking and verifying the results obtained with other 

methods 

1.4. Paper organization 

The subsequent sections of the paper are structured as 

follows. Section 2 presents the modeling of the EED 

problem, and then using the ROA for deal with the problem 

is fully introduced. In Section 3, implementation of the 

scheme in standard networks in MATLAB software are 

presented. Also, in this section, the test results of the 

suggested algorithm and those presented in the background 

research are reviewed in detail, and eventually, Section 5 

provides the conclusion of the paper. 

2. Proposed method 

This section presents solving the emission dispatch problem 

based on the ROA method. In order to explain the problem, 

the equations and formulation of economic dispatch are first 

given, then the emission dispatch problem and the 

combination of these two dispatches are provided in the 

form of EED in the next subsections. In the rest of this 

section, the general theory of the ROA and finally the 

complete flowchart of the implementation of the EED 

problem are provided.  

2.1. Economic dispatch 

The economic dispatch problem minimizes the fuel 

cost function for the generation of a certain amount of 

power while satisfying the restrictions governing the 

generation. In this paper, the fuel cost function is modelled 

using a smooth quadratic and a cubic function. However, in 

fact, the cost function is not smooth and has local maxima 

and minima. To show this feature of the quadratic cost 

function and the second part of the function, the absolute 

value cost is a sinusoidal function, which are called non-

smooth functions [14]. For this purpose, the cost of fuel 

used to produce Pi in the ith power plant is determined by 

Fi. 

2.1.1. Smooth quadratic function of fuel cost 

In this model, the smooth quadratic function of fuel 

cost is given in terms of the power generation of the power 

plant. Equations (1) and (2) show the model considered in 

this paper. 

(1) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑐𝑜𝑠𝑡 =∑(𝑎𝑖 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖𝑃𝑖
2)

𝑛

𝑖=1

 

(2) 𝐹𝑐𝑜𝑠𝑡 =  𝐹1 + 𝐹2 +⋯…… . . +𝐹𝑛 

2.1.2. Non-smooth function of fuel cost 

The non-smooth function of fuel cost is provided in 

Equation (3) for minimization purposes.  

(3) 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑐𝑜𝑠𝑡 =∑𝑎𝑖 + 𝑏𝑖𝑃𝑖

𝑛

𝑖=1

+ |𝑒𝑖  × sin(𝑓𝑖 (𝑃𝑖𝑚𝑖𝑛) − 𝑃𝑖)| 

Table 2: Summary and summation of previously presented algorithms based on references 

 Ref. Optimization 

method Test system Abbreviated constraints 
A B C M N P L R T V S LF 

T
ra

d
it

io
n

a
l 

m
e
th

o
d

s 

[1] LR 1-4 -8             
[2] LI 1 and 1-5             
[3] PS 3-1 -10 -18-3 -8             
[4] QP 3-11-13 -16 -20             
[5] NR 3-4 -7             

N
o

v
e
l 

m
e
th

o
d

s 

[7] ANN 1-2 -18 -23             
[8] AHNN 1-4             
[9] BBO 1-4 -5-10-14 -18 -22             
[10] IABC 1-3 -4-18             
[11] CBBO 4-5 -18             
[12] GA 1-4             
[13] PSO 1-3 -4-13             
[14] DE 5             

C
o

m
b

in
e
d

 m
e
th

o
d

s 

[15] DE-BBO 1-4             

[16] DHS 10 -18             

[17] HPSO-GSA 1-10-18             

[18] JAYA–TLBO 5-9 -10             

[19] MHBA 2-10             

[20] 
CSA-BA-

ABC 
8             

[21] GA–WOA 1-3 -8-18 -20             

[22] DE-CQPSO 4-9             
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problem, the equations and formulation of economic 

dispatch are first given, then the emission dispatch problem 

and the combination of these two dispatches are provided in 

the form of EED in the next subsections. In the rest of this  

section, the general theory of the ROA and finally the 

complete flowchart of the implementation of the EED 

problem are provided.  

2.1.3.Constraints 

The problem constraints, including the generation and 

consumption equality condition, taking into account losses, 

generation limits of generators, and applying the slope rate 

of power plants, are given in Equation (4)-(8). 

∑ Pi = Pd + PL
𝑛

i=1
 (4) 

𝑃𝐿 =  ∑∑𝑃𝑖 .𝐵𝑖𝑗 .𝑃𝑗+∑𝐵𝑜𝑖 . 𝑃𝑖 + 𝐵𝑜𝑜

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑖=1

 (5) 

𝑃i.min   ≤  Pi ≤ Pi.max (6) 

𝑃im− Pi(m−1)  ≤ URi         𝑖 𝜖 𝑛 . 𝑚 𝜖 𝑀 (7) 

𝑃i(m−1) − Pim ≤ DRi       𝑖 𝜖 𝑛 . 𝑚 𝜖𝑀 (8) 

 Fig. 1 shows the fuel cost function model of power 

plants with smooth functions considering the slope rate of 

power plants. 

2.2. Emission dispatch 

The main goal of solving emission dispatch problems 

is to reduce the output emission of power plants. By 

examining the amount of pollutant, i.e., NOX and SOX 

output from power plants, it is seen that many factors impact 

the emission rate of power plants, the most important of 

which is the active power output. The relationship between 

these two variables is nonlinear. 

 The simplest emission model according to the ISO 

standard for emission dispatch is a quadratic function. 

However, the research shows that the emission cost function 

of a power plant is assumed to be the sum of a quadratic 

function and an exponential function in terms of active 

power generation so that a more accurate solution can be 

achieved [15]. 

2.2.1. Smooth quadratic function of fuel cost 

Equations (9) and (10) express the minimization and 

smooth functions of fuel cost: 

(9) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸𝑐𝑜𝑠𝑡 = ∑ (
𝑛

𝑖=1
𝛼𝑖 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖𝑃𝑖  )

2  

(10) 𝐸𝑐𝑜𝑠𝑡 = 𝐸1 + 𝐸2 +⋯𝐸𝑛 

2.2.2. Non-smooth function of fuel cost 

Equation (11) presents the non-smooth function model 

of fuel cost. 

(11) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸𝑐𝑜𝑠𝑡 =∑ (
𝑛

𝑖=1
𝛼𝑖 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖𝑃𝑖

2 + 𝛿𝑖𝑒
𝜆𝑖𝑃𝑖) 

 

Fig. 2 illustrates the emission cost functions of plants 

using non-smooth functions. 

 C
o

st
 (

$
/h

)

Output Power (MW)

 
Fig. 1: Fuel cost functions of power plants with smooth 

functions by applying the slope rate of power plants. 

Em
is

si
o

n

Output Power (MW)
 

Fig. 2. Model of emission cost functions of power 

plants with non-smooth functions. 

2.3. EED problem 

Economic dispatch and emission dispatch problems are 

used together in this part of the paper to optimize fuel cost 

and reduce the amount of emission of power plants. The 

formulation of the EED problem is provided by 

considerations made on the objective functions of economic 

dispatch and emission dispatch.  

The multi-objective EED problem becomes a single-

objective problem by defining the price penalty coefficient. 

The price penalty coefficient method is proposed based on 

the PSO algorithm to obtain the optimal Pareto curve, which 

is one of the best possible solutions to solve the EED 

problem. The optimal Pareto curve shows the relationship 

between the results of economic and emission dispatches, 

and the optimal point of this curve is obtained by 

determining the penalty coefficient of power plants.  

The EED can find the optimal point from the Pareto 

curve considering the objectives of the problem, i.e., the 

cost and emission reduction. To convert the multi-objective 

EED into a single-objective problem, the penalty 

coefficients of power plants must be obtained.  

The necessary equations to implement the proposed 

method are given in Equations (12)-(17). 

(12) 
𝑃𝐺𝑖 =

(𝜆 − 𝛽𝑖)

2𝛾𝑖
𝑀𝑊 
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(13) 

{
 
 

 
 min𝛷𝑇 =∑[𝐹𝑖(𝑃𝐺𝑖). 𝐸𝑖(𝑃𝐺𝑖)]

𝑛

𝑖=1

min𝛷𝑇 =∑[𝐹𝑖(𝑃𝐺𝑖)]

𝑛

𝑖=1

+ ℎ𝑖∑[𝐸𝑖(𝑃𝐺𝑖)]

𝑛

𝑖=1

 

(14) ℎ𝑖 =
𝐹𝑖(𝑃𝑖.𝑚𝑎𝑥)

𝐸𝑖(𝑃𝑖.𝑚𝑎𝑥)
 

  Thus, the cost and emission functions in equation (13) 

are transformed into the objective function.  

 

 

 

(15)   
{
 
 
 

 
 
 𝐹1 =∑[𝐹𝑖(𝑃𝐺𝑖)]

𝑛

𝑖=1

;  𝐹2 =∑[𝐸𝑖(𝑃𝐺𝑖)]

𝑛

𝑖=1

𝐹𝑡𝑜𝑡𝑎𝑙 =∑(𝑎𝑖 + ℎ𝑖𝛼𝑖) + (𝑏𝑖 + ℎ𝑖𝛽𝑖)𝑃𝑖

𝑛

𝑖=1

+(𝑐𝑖 + ℎ𝑖𝛾𝑖)𝑃𝑖
2

𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹1 + ℎ𝑖𝐹2

 

By defining the mass coefficient w1 and w2, the 

relationship between the total cost of EED can be calculated 

based on the cost obtained from economic dispatch, F1, and 

emission dispatch, F2: 

(16) 𝐹𝑡𝑜𝑡𝑎𝑙 = 𝑊1𝐹1 + ℎ𝑊1𝐹2 

 𝑖𝑓 {
𝑊1 +𝑊2 = 1
𝑊1 = 𝑊

  → 𝑊2 = 1 −𝑊 

(17) 𝐹𝑡𝑜𝑡𝑎𝑙 = 𝑊1𝐹1 + (1 −𝑊)ℎ𝐹2 

 𝑖𝑓 {
𝑊 = 1
𝑊 = 0

  →
𝐹𝑡𝑜𝑡 = 𝐹1
𝐹𝑡𝑜𝑡 = 𝐹2

 

For w=1 and w=0, the economic/emission dispatch 

equation is transformed into the economic and emission 

dispatch equations, respectively.  

Overall, the aim of performing EED is to obtain the 

mass coefficient in the range of 0 ≤ 𝑊 ≤ 1 so that an 

optimal point is found on the Pareto curve [23]. 

2.4. Rain optimization algorithm 

Metaheuristic optimization methods are employed to 

address intricate global challenges across several domains. 

These algorithms aim to replicate natural processes by 

employing iterative sequences to discover a rapid and 

efficient resolution to complex issues. This section aims to 

thoroughly investigate the behavior of rain. 

 A raindrop can serve as a model for any solution. In 

certain issue scenarios, certain points inside the solution 

space are chosen at random, analogous to the random 

distribution of raindrops on the ground. The primary 

characteristic of every raindrop is its radius. Over time, the 

radius of each raindrop undergoes a process of diminishing 

and subsequent enlargement when the raindrop merges with 

other drops. After the initial population of solutions is 

created, the radius of each drop can be randomly decided 

within an appropriate range.  

During each iteration, every droplet examines its 

immediate environment based on its size. Isolated droplets 

without any connections just consider the largest area they 

cover. When a problem is resolved in n-dimensional space, 

every individual element comprises n variables. Hence, the 

initial stage involves scrutinizing the lower and upper 

bounds of the variable, as these bounds are dictated by the 

drop's radius.  

Subsequently, the two endpoints of the second variable 

are subjected to testing, and this process is repeated until the 

final variable is reached.  

Currently, the cost of the first descent is being revised 

as it descends. These declines are not yet in their ultimate 

stage, and although the cost function is lowering, it is 

moving downward in a consistent path.  

This process is carried out for every individual 

instance, after which the expense and location of each 

instance are ascertained. Based on Equations (18) and (19), 

the radius of each drop undergoes modifications in two 

distinct states: 

1. If two drops with radii r1 and r2 are close to each 

other and have a common area with each other; 

they can join together to form a larger drop of 

radius R: 

(18) 𝑅 = ( 𝑟1
𝑛 +  𝑟2

𝑛)1 𝑛⁄  

where, n is the number of variables in each 

drop.  

2. If a drop of radius r1 does not move, a percentage 

of its volume can be absorbed, depending on the 

soil property, denoted by α. 

(19) 𝑅 = (𝛼 𝑟1
𝑛)1 𝑛⁄  

where, α is the proportion of drop volume that can be 

absorbed in each iteration, ranging from 0 to 100%. The 

minimum drop radius is denoted as rmin, and any drops with 

radii smaller than this value are excluded. It is evident that 

the population size reduces over a few iterations, and more 

significant declines occur with bigger amplitudes. 

Expanding the research range for each drop leads to a 

proportional improvement in the local search capability of 

the drops, corresponding to the size of the drops.  

Consequently, as the number of iterations grows, the 

weak drops with low amplitude will either vanish or merge 

with stronger drops that have a wider radius. This will lead 

to a significant reduction in the original population, thereby 

expediting the discovery of accurate solutions.  

The subsequent discussion outlines the fundamental 

distinctions between ROA and search-based algorithms. In 

the context of the ROA, the starting population number 

undergoes changes in each iteration as a result of 

neighboring drops attaching or being absorbed by the soil, 

despite the implementation of various search algorithms.  

This challenge improves the algorithm's search 

capability and significantly reduces the cost of 

optimization. Following each repetition, the dimensions of 

each droplet undergo modifications as a result of 

neighboring droplets adhering to them or being absorbed by 

the soil. This action enhances the search capability of each 

item and classifies the items based on their significance. In 

numerous other search algorithms, every population (drop) 
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in each iteration is composed of randomly chosen 

neighboring points, and the drop is randomly enhanced by 

one step. Conversely, in ROA, every drop identifies the 

optimal route to reach the minimal point. Once the path is 

discovered, it descends gradually, with the cost function 

decreasing in a single iteration.  

This results in the rapid departure of the original 

population from the incompatible sites. Essentially, the 

technique requires the user to input specified parameters 

such as the beginning number of raindrops (population size) 

and the initial radius of each raindrop (search space) in the 

first stage. Subsequently, a numerical value is allocated to 

every droplet based on the cost function.  

Subsequently, every droplet commences its descent. 

Hence, the cost function scrutinizes the endpoints of each 

drop. Once a droplet is set in motion, it will persist in its 

trajectory until it reaches a point of minimal elevation along 

its course. This scenario is replicated for every individual 

drop.  

Along the path, nearby drops can join each other and 

significantly increase the speed of the algorithm. When a 

drop reaches the minimum point, its radius gradually 

decreases, thus significantly enhancing the response 

accuracy. This strategy enables the algorithm to identify all 

the largest (end) points of the objective function.  

When it rains, raindrops fall on the surface of the earth. 

After some time, it is observed that some of these drops 

connect to each other and form more significant drops that 

can move under the influence of their force on the surface 

to places with a lower level of the earth's surface. Along the 

path, other amazing things happen to these drops. Some 

drops may move to other drops and join them, or some of 

each drop may vaporize or be absorbed depending on 

different soil properties such as the nature of the soil 

surface, including permeability, leakiness, and soil 

moisture. In addition, a portion of the soil undergoes 

dissolution in the water.  

During this process, the drops that land on the level 

surface can be fully absorbed by the soil and vanish, 

whereas the ones that fall on the inclined area descend and 

merge with other drops, resulting in the formation of a water 

stream. Certain streams have the potential to interconnect 

and create a river.  

Obstacles in the passage of streams or rivers can lead 

to the formation of lakes, highlighting the significance of 

water volume in such cases. Following the cessation of 

rainfall, the water currents and rivers converge into nearby 

lakes, and over time, smaller lakes may dissipate as a result 

of water evaporation or absorption by the soil. Therefore, 

depending on the surface topology and soil characteristics, 

only a few significant lakes remain.  

These lakes represent a local minimum and deeper 

lakes represent a global minimum. As the type of rain 

changes, the previous scenario may change slightly. For 

example, if heavy rain is accompanied by large drops, all 

the drops will connect very quickly and, without absorption 

and evaporation, will lead to flooding. Only the global 

minimum can be discerned in this scenario, as all the local 

minima are interconnected as a result of intense rainfall.  

In contrast, in the presence of light rain characterized 

by little droplets, the soil has the capacity to absorb all the 

drops, so preventing any runoff. Hence, it is evident that 

establishing the parameters when utilizing the ROA holds 

great significance. The particle movement in the suggested 

technique bears resemblance to slope-based optimization 

methods and conventional single-point algorithms, such as 

hill climbing, slope optimization algorithm, and rainfall 

optimization. These strategies iteratively tweak a single 

parameter to determine if modifying it enhances the cost 

performance. Nevertheless, the ROA employs a collection 

of answers that all converge towards the optimal outcome 

concurrently.  

During each iteration of this movement, certain traits 

undergo changes. For instance, their dimensions may 

undergo alterations or they may vanish. Furthermore, the 

ROA has the capability to identify all points of maximum 

rather than solely minimum or maximum points. Fig. 3 

shows the flowchart of the ROA. 

 

 

Fig. 3: Flowchart of the ROA [24]. 
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2.5. The ultimate flowchart of the proposed algorithm 

In this subsection, the final flowchart for solving the 

EED problem based on the ROA is given in a general 

format. The flowchart is designed in two blocks according 

to Fig. 4. 

3. Simulation and results 

This section applies the ROA to deal with the EED 

problem. For evaluation and comparison purposes, the 

results obtained from the implementation of the suggested 

design together with similar optimization algorithms are 

used. The successful results of the implementation of the 

proposed design in comparison with the rest of algorithms 

confirm the acceptable performance of the suggested. Five 

different cases have been used for this evaluation. Table 1 

lists the definitions of each of the cases. The information 

included for each case includes test system, number of units, 

power demand, heat demand, and system losses. In Table 3, 

the information required for each case is given. The power 

generation units provide function inputs in each case 

depending on the design of the problem so that it is possible 

to compare the emission rate and the fuel cost rate of each 

scenario according to the power consumption of the load. 

For each test system, the convergence behavior of the 

objective function can also be observed using the ROA 

method. All simulations were conducted on a computer 

using MATLAB software. 

3.1. Evaluation of Case I  

According to the information provided in Table 3, Case I 

includes three generator units. According to the results 

presented in Table 4, it can be seen in this test system that 

the technique proposed in this paper has outperformed the 

techniques presented in other references. According to the 

result obtained with the value of 11.658, the ROA optimized 

the consumption of generator units to create a better fuel 

cost and emission rate and reduce losses. Next, Fig. 5 

presents the convergence behaviour of the objective 

function by ROA. emission rate obtained using the ROA are 

presented in Table 5. By comparing the techniques 

mentioned in Table 5, it is observed that the ROA provides 

the lowest emission rate while the SFLA gives the best fuel 

cost. 

 
Fig. 4: Flowchart of solving the EED problem by ROA.

Rain optimization algorithm

Final population sorting

Show the best answer

Calculation of economic objective function 

and pollution

• Start

• Get the vector of production powers 

produced by the ROA algorithm.

• Get the cost and pollution 

coefficients of the units and the 

power limit of the production units.

• Get network loss matrix. 1

• Using the network loss matrix B, calculate 

the network loss for the generated power by 

ROA.

• Check the balance condition of production 

and consumption and losses.

• For t=1:1000

If Sum(PG)=PD+Ploss then exit the loop

If Sum(PG)>PD+Ploss then PG=PG-0.1

If Sum(PG)<PD+Ploss then PG=PG+0.1

In each iteration of the loop, the condition of 

increasing the slope of the power plant should 

be checked.

Do step 2 for new powers.

• End

• Calculate the cost functions of 

producing units according to

Fcost=∑ ai+biPi+|ei × sin (fi (Pimin)-Pi)|

n

i=1

 

Ecost=∑ (
n

i=1
αi+βiPi+γiPi

2+δie
λiPi) 

hi=
FCosti(Pi.max)

ECosti(Pi.max)
 

F1=∑[FCosti(PGi)]

n

i=1

; F2=∑[ECosti(PGi)]

n

i=1

 

• Check the minimum and maximum 

power condition of each unit with the 

information of part 1 for all the vector 

capacities of production powers by ROA.

• If P was greater than Max then P=Max

• If P was smaller than Min, then P=Min
2

3

4

5
Ftotal=F1+hiF2  

• Start

• Setting the initial parameters

• number of repetitions, number of 

variables, number of initial population, 

droplet size, rain rate and soil absorption 

constant α 1

While the iterations of the algorithm are not 

finished, repeat the following operations

For each member of the initial population

• Move the position of each member forward and 

backward in a certain neighborhood 

corresponding to the radius of the drop and 

calculate the objective function for the new 

position according to block "A".

• If the value of the objective function improves in 

the new position, the new position replaces the 

previous position

While the changes in the objective function are 

decreasing

• Move the desired diameter in the same direction 

and at the same speed as before

• Reduce the diameter of the drop according to the 

absorption coefficient of the soil

• Make close drops into one drop

End

End

• Generating initial population position and droplet 

size

• Calculating the objective function for each of the 

drops or the initial population according to block 

"A" and sorting the initial population according to 

the value of the objective function

2

3

R=(α r1
n)1 n⁄  

R=( r1
n+ r2

n)1 n⁄  

B
lo

c
k
 A

• Remove weaker droplets according 

to soil adsorption constant.

• Produce new drops according to the 

speed of the population rain.

End 4

5
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3.2. Evaluation of Case II  

       In this scenario, simulations have been performed on 

the 10-bus test system. The optimal fuel cost and the target 

convergence behavior of the ROA for this scenario is shown 

in Fig. 6.  

 

3.3. Evaluation of Case III test system 

Case III was simulated on the IEEE 30-bus system. Table 6 

shows the optimal power allocation that provides the best 

fuel cost in this case. The convergence curve of the 

objective function concerning the best optimization report 

is provided in Fig. 7. 

 

3.4. Evaluation of Case IV test system 

Table 7 presents the outcomes of Case IV for various 

optimization strategies. The ROA yields the most 

favourable outcome for this system, while the CSOA ranks 

third in terms of performance. Fig. 8 illustrates the 

convergence of the objective function in this scenario. 

3.5. Evaluation of Case V  

For the experimental system of Case V, the power allocation 

achieved for fourteen generators is displayed in Table 8. 

Based on the comparison study and the data presented in the 

table, it can be concluded that the suggested algorithm has 

achieved the smallest fuel cost and emission rate. 

Furthermore, the Fig. 9 illustrates the convergence pattern 

of the objective function. 

 

 

 

Table 3: Different cases considered for 

problem testing and evaluation 
Problem Case No. of units Power demand (MW) Loss 

CEED 

Case I 3 500 ⸭ 

Case II 10 2000 ⸭ 

Case III 6 283.4 ⸭ 
Case IV 40 10500 - 
Case V 19 950 ⸭ 

 

Table 4: Obtained results for Case I. 
Case 1 G1 G2 G3 C Fc FE LP 

FA 128.884 192.585 190.282 39209.93 - 311.15 11.693 

BA 128.828 192.579 190.285 39209.94 - 311.15 11.693 

HYB 128.834 192.567 190.291 39209.96 - 311.15 11.693 

GA 128.997 192.683 190.110 39220 - 311.27 11.696 

PSO 128.984 192.645 190.063 39210.20 - 311.15 11.691 

FPA 128.807 192.590 190.295 39210.15 - 311.155 11.693 

MSFLA 128.338 191.946 191.389 32209.81 - 311.163 11.692 

KKO 129.011 192.303 190.274 39199.7 25490.5 311.013 11.687 

ROA 129.394 192.270 190.875 38481.54 25459.2 311.06 11.658 

 

 

 

Table 5: Obtained results for Case II. 
Case 2 NSGA-2 PDE SPEA-2 GSA PSO EMOC FPA LFA KKO ROA 

G1 51.9515 54.9853 5.97612 5.99924 55 55 53.188 5.99204 5.99234 57.654 

G2 67.2584 79.3803 72.813 7.95869 80 80 79.975 7.86798 7.89148 79.548 

G3 73.6879 83.9842 7.11288 7.43419 81.14 8.55943 78.105 7.71688 7.79468 83.538 

G4 91.3554 86.5942 8.60883 85 84.213 8.60314 97.119 7.10558 8.74798 87.866 

G5 134.0522 144.4386 1.24323 1.10634 1.33773 1.56324 152.74 1.62724 15.8149 145.79 

G6 174.9504 165.7756 1.91887 1.56706 1.50866 1.24816 163.08 1.09365 16.5550 17.6510 

G7 289.4350 283.2122 2.20238 2.87499 2.83389 300 258.61 2.99549 26.1742 288.77 

G8 314.0556 312.7709 3.40232 3.23871 3.58241 3.34941 302.22 3.22190 30.8578 316.91 

G9 455.6978 440.1135 4.88144 4.17754 4.33632 4.91831 433.21 4.32434 43.3070 430.88 

G10 431.8054 432.6783 4.90252 4.63062 4.15984 4.31333 466.70 4.69473 46.0391 455.65 

Fc 1.13539 1.1351 1.1352 1.1349 1.1342 1.13445 1.1337 1.13246 1.13481 1.1338 

FE 4130.2 4111.1 4109.1 4111.4 4120.1 4119.83 3997.7 4138.9 3988.52 3886.7 
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4. CONCLUSION AND FUTURE TRENDS 

In this paper, the optimization of the EED problem was 

carried out using the ROA. To realize this, various 

limitations, such as cost functions with non-smooth points, 

reducing the amount of pollution, limitations of power 

generation, and considering losses as well as thermal power 

plants of the system are taken into account. In this research, 

the proposed algorithm was applied to reduce cost and 

emission in the EED model on 3, 10, 6, 40, and 15-unit 

systems. The findings of simulation confirmed the 

effectiveness of the ROA method in achieving the best 

solution for the problem. In this article, the ROA algorithm 

managed to plan the production with an optimal cost of 

38481.54 dollars in case 1, which obtained a more optimal 

value than all the compared algorithms. 

Also, in the case 2, the ROA algorithm was able to 

increase the value of the FE function to 3886.7, which is 

much lower than other algorithms, and this shows the power 

of this algorithm in solving EED problems. In case 2, the 

ROA algorithm was able to reduce the value of the FC 

economic objective function to 1.1338, which is much 

lower compared to the PSO, GSA, KKO, etc. algorithms. In 

case 3, it can be seen that the FC and FE target function 

values for rain optimization algorithm are 603.65 and 

0.2013, respectively. As the results of all three case studies 

showed, the ROA algorithm has been able to reduce the cost 

and environmental pollution in the best way in all cases, 

which indicates the strength and accuracy of this algorithm 

in finding the global optimum. A summary of the 

contributions of the paper include: 

• Reduction of system losses compared to economic 

dispatch, 

• Reduction of emission compared to economic 

dispatch, and 

• Reduction of total cost compared to economic 

dispatch and emission dispatch 

And, below are the suggestions for future studies: 

• Implementing EED for systems with multi-piece 

fuel cost curve with non-smooth functions 

considering wind energy uncertainty, and 

• Implementing EED by considering the dynamic 

model for the slope constraints of power plants and 

using virtual power plants for problem solving and 

investigating their effects. 

Table 6: Obtained results for Case III. 

Case 3 MHBA FSBF NSBF KKO ROA 

G1 10.94 19.43 17.80 12.9546 13.6 

G2 29.85 37.26 33.66 32.2445 38.7 

G3 58.29 68.57 72.92 54.51935 70.5 

G4 99.48 59.19 59.08 96.9029 87.6 

G5 51.81 60.85 57.66 52.9564 58.9 

G6 36.20 40.61 44.74 36.548 43.6 

Fc 607.39 619.3679 619.6086 605.68 603.65 

FE 0.2208 0.2015 0.2027 0.217897 0.2013 

LP 3.204 2.51 2.46 2.396 2.42 

 

 

 
Fig. 5: Convergence behaviour of ROA objective 

function in Case I. 

 

Fig. 6: Convergence behaviour of ROA objective 

function in Case II. 

 

Fig. 7: Convergence behaviour of ROA objective 

function in Case III. 

 

Fig. 8: Convergence behaviour of ROA objective 

function in Case IV. 

 

 
Fig. 9: Convergence behaviour of ROA 

objective function in Case V. 



N. Yousefi et al.  Journal of Applied Research in Electrical Engineering, Vol. 3, No. 1, pp. 19-32, 2024 

30 
 

 

 Table 7: Obtained results for Case IV. 

Case 4 NSGA-II SPEA-2 GSA MABC MABC FPA ISA KKO ROA 

G1 113.8685 113.9694 113.9989 110.7998 110.8998 43.405 43.567 114 113.65 

G2 113.6381 114 113.9896 110.7998 110.7998 113.95 113.56 113.045 113.47 

G3 120 119.8719 199.9995 97.3999 97.3999 105.86 105.76 119.744 111.52 

G4 179.94 179.9284 179.7857 174.5504 174.5486 169.65 169.43 181.102 180.6 

G5 180.7887 97 97 87.7999 97 96.659 96.62 96.5081 96.66 

G6 140 139.2721 139.0128 105.3999 105.3999 139.02 139.23 139.796 139.55 

G7 300 300 299.9885 259.5996 259.9556 273.28 273.36 299.686 295.8 

G8 299.0084 298.2706 300 284.5996 284.5996 285.15 285.15 298.619 288.76 

G9 298.8890 290.5228 296.2025 284.5996 284.5996 241.96 241.54 289.447 290.5 

G10 131.6132 131.4832 130.3850 130 130 131.26 131.26 131.386 132.5 

G11 246.5138 244.6704 245.7475 318.1921 318.2129 312.13 312.12 241.114 250.6 

G12 318.8748 317.2003 318.2101 243.5996 243.5996 362.58 362.45 318.381 350.3 

G13 395.7224 394.7358 394.6257 394.2793 394.2793 346.24 346.34 395.689 395.8 
G14 394.1369 394.6223 395.2016 394.2793 394.2793 306.06 306.06 393.82 395.1 
G15 305.5781 304.7271 306.0014 394.2793 394.2793 358.78 358.54 305.891 355.4 
G16 394.6968 394.7289 394.1005 394.2793 394.2793 260.68 260.23 394.283 394.8 
G17 489.4234 487.9857 489.2569 399.5195 399.5195 415.19 415.26 489.706 489.43 
G18 488.2701 488.5321 488.7598 399.5195 399.5195 423.94 423.56 487.897 488.3 
G19 500.8 501.1683 499.2320 506.1985 506.1716 549.12 549.03 500.104 537.5 
G20 455.2006 456.4324 455.2821 506.1985 506.2206 496.7 496.74 455.719 500.4 
G21 434.6639 434.7877 434.45202 514.1472 514.105 539.17 538.76 434.334 520.4 
G22 434.15 434.3937 433.8125 514.1455 514.1472 546.46 546.46 434.86 544.5 
G23 445.8385 445.0772 445.5136 514.5237 514.5664 540.06 540.56 446.6 533.3 
G24 450.7509 451.8970 452.0547 514.5386 514.4868 514.5 514.55 451 500.4 

G25 491.2745 492.3946 492.8864 433.5196 433.5195 453.46 453.67 451.259 490.5 

G26 436.3418 436.9926 433.3695 433.5195 433.5196 517.31 516.891 435.7721 500.6 

G27 11.2457 10.7784 110.0026 10 10 14.881 14.345 11.079 12.45 

G28 10 10.2955 10.0246 10 10 18.79 18.64 10.3466 15.4 

G29 12.0714 13.7018 10.0125 10 10 26.611 26.578 12.2337 11.65 

G30 97 96.2431 96.9125 97 87.8042 59.581 59.565 96.6001 96.1 

G31 189.4926 190.0000 189.9689 159.733 159.733 183.48 183.36 189.436 188.76 

G32 174.7971 174.2196 175 159.733 159.7331 183.39 182.87 175.188 176.5 

G33 189.2845 190 189.0181 159.733 159.733 189.02 189.22 189.992 189.4 

G34 200 200 200 200 200 198.73 198.65 198.679 199.8 

G35 199.9138 200 200 200 200 198.77 198.76 199.89 198.6 

G36 199.5066 200 199.9978 200 200 182.23 182.45 199.905 198.52 

G37 108.3061 110 109.9969 89.1141 89.1141 39.673 39.635 108.554 109.89 

G38 110 102.6912 109.0126 89.1141 89.1141 81.596 81.625 109.71 109.6 

G39 107.7899 108.5560 109.4560 89.1141 89.1141 42.96 42.91 108.639 109.4 

G40 421.5609 421.8521 421.9987 56.1879 506.1951 537.17 537.15 421.912 588.8 

Fc 1.5283 1.2581 12.2587 1.24490903 1.2449116 1.23170 1.23034 1.25852 1.21 

FE 2.1095 2.1110 2.1093 2.56560267 2.5656026 2.0846 2.0643 2.10837 2.55 

 

Table 8: Obtained results for Case V. 

Case 5   CSAISA ISA HSA DE PSO GA KKO ROA 

G1 102.6468 100.3485 100.3839 100.5473 100.7363 100.8578 65.43 68.65 

G2 59.1816 58.8270 58.6583 58.5372 58.2314 58.3547 75.2154 76.55 

G3 50.0599 50.8309 50.8302 50.8474 50.5242 50.9973 69.7721 69.5 

G4 70.3498 73.3932 73.5292 73.0932 73.3238 73.4352 76.7522 75.34 

G5 63.1042 59.1153 59.1846 59.9323 59.7272 59.4636 78.5975 77.44 

G6 51.0080 50.1468 50.9231 50.7397 50.2726 50.6254 74.8284 73.23 

G7 50.0000 507470 50.2832 50.5360 50.8362 50.5363 64.9154 65.4 

G8 51.0166 53.2494 53.0220 53.2324 53.5242 53.1321 64.005 65.5 

G9 83.9497 85.1551 85.8231 85.4235 85.4355 85.3546 73.8251 70.43 

G10 87.1409 92.1870 92.6484 92.5426 92.0388 92.7522 66.2354 60.33 

G11 58.6019 61.3470 91.9233 61.5243 61.6493 61.4368 68.8125 70.4 

G12 119.1476 121.8597 121.4353 121.6357 121.7468 121.2463 65.6357 66.53 

G13 50.0000 50.0000 50.4352 50.5367 50.6484 50.7468 64.8102 66.42 

G14 50.0000 50.0000 50.5327 50.6382 50.8202 50.4373 50.0000 50.33 

G15 7.2070 7.2069 7.3536 7.6388 7.8447 7.4357 8.854 8.88 

Fc 4352.39 4353.57 4366.27 4387.44 4427.26 4453.85 4304.62 4277.6 

FE 135.23 136.46 144.85 153.42 176.75 184.38 108.85 104.7 
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