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Abstract: Different types of optimal leader-follower consensus of high-order multi-agent systems (MAS) under fixed, 

connected, and directed communication topology are presented in this paper. The dynamics of each agent including the 

followers and their corresponding leader is a linear high order system. First, the Linear Quadratic Regulator (LQR) 

problem is discussed to achieve the optimal consensus for high-order linear MAS with a guaranteed predefined phase 

and gain margin. Then stochastic leader-follower consensus problem of MAS in the presence of the Gaussian noise is 

designed. To tackle these problems, a set of fixed distributed control laws for each follower agent is designed, based on 

algebraic graph theory. Simulation results indicate the effectiveness of the proposed method and display the consensus 

in both cases via distributed control laws. 
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1. INTRODUCTION 

Simulation has become an indispensable tool for 

researchers to explore systems without having recourse to real 

experiments. Depending on the characteristics of the modeled 

system, the methods used to represent the system may vary. 

Multi-agent systems are, thus, often used to model and 

simulate complex systems. Control and optimization for 

multi-agent systems have drawn increasing interest in the past 

decade because they can be used to model practical examples 

in many fields, such as physical and information technology, 

economics, engineering, and social. In multi-agent systems, 

there are five types of problems: 1- Consensus 2- 

Containment 3- Tracking 4- Connectivity 5- Formation 6- 

Fault detection. In a consensus between agents, all agents try 

to achieve a constant value. This constant value is the average 

of the initial conditions of the agents. That is why it is called 

the average consensus. In such cases, the average consensus 

error is written and is tried to stably reduce this error to zero. 

A. Bazaei et al. present a Linear Quadratic Gaussian 

(LQG) method to improve the tracking control performance 

of the constant-linear-velocity spiral reference [1]. This 

method is generally more robust compared to the inversion 

control technique. In [2] an optimal control strategy based on 

LQR controller is proposed for a group of agents to maintain 

formations while moving towards the destination. X. Li et al. 

investigate the distributed suboptimal LQR controller 

problem for continuous-time multi-agent systems [3]. In this 

reference, the distributed controllers are designed based on 

the system’s topological structure such that each subsystem 

can use the information of its state and its neighbors. A. Iftar 

et al. study present a Linear Quadratic Gaussian/Loop 

Transfer Recovery (LQG/LTR) design methodology for 

decentralized control systems [4]. In [5] upper bounds on the 

norm of the multiplicative error matrix are calculated. They 

account for the interactions between the subsystems. F. Zhang 

et al. study the decentralized optimal control of discrete-time 

system with input delay and propose decentralized and 

centralized optimal controllers by the optimal tracking 

control use the LQR problem with delay. In [6] a Leveraging 

nonlinear model predictive control and a linear quadratic 

regulator (LQR) is developed as new methods for the active 

control of the spatial distribution of several such buoyancy 

actuated agents. Thus, in demonstrated a novel application of 

feedback control theory with LQR to an emerging real-world 

application in multi-agent systems. In [7] Lebao Li et al. 

present some common control algorithms of quadrotor 
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unmanned aerial vehicle such as LQR, and analyse their 

merits and drawbacks. In addition, it is discussed that because 

of the limitations of single control algorithms, hybrid control 

schemes should be used to get the best performance. S. L. 

Nguyen et al. investigate the LQG game with a major player 

and a large number of minor players with mean field coupling 

[8]. 

In [9] A. M. Ferreira et al. present a self-tuning 

LQG/LTR method to design a controller for Thyristor 

Controlled Series Capacitors (TCSCs) with the objective of 

damping electromechanical power system oscillations. The 

optimal control problem in continuous space and time for 

collaborative multi-agent systems is investigated by W. 

Wiegerinck et al. [10]. In this method the agents in a 

stochastic environment have to distribute themselves over a 

number of targets. In [11] M. Nourian et al. study the large 

population leader-follower multi-agent systems where the 

agents have linear dynamics and are coupled via their 

quadratic cost functions. A mean field LQG stochastic control 

theory is presented for the large population dynamic game 

problem. Focusing on multi-robot navigation and collision 

avoidance applications, H. V. Henderson et al. propose a 

method to reduce the decentralized partially observed 

Markov decision process using the collection of decentralized 

LQG controllers for agents, thus, maximizing the joint 

performance of the team [12]. In [13] the problem of 

distributed linear-quadratic optimal control with agent-

specified differential privacy requirements using the LQG 

problem has been studied. In [14] investigate the finite-time 

stability of a linear discrete time system with time-varying 

delays and its applications to the consensus problem of multi-

agent system. In [15] using a control method similar to the 

LQR, the state-derivative and output-derivative feedbacks are 

derived for linear time-invariant systems. M. Rafiei sakhaei 

et al. provide a complete derivation for LQR optimal 

controllers and the optimal value function using basic 

principles from variational calculus [16]. As opposed to 

alternatives, the derivation does not rely on the Hamilton-

Jacobi-Bellman equations, Pontryagin’s maximum principle, 

or the Euler-Lagrange equations. It provides a different 

perspective of how and why key quantities such as the adjoint 

variable and Riccati equation show up in optimal control 

computations and their connection to the optimal value 

function. In [17] a linear quadratic optimal hierarchical 

control problem is studied in which by using semi-groups the 

Kronecker product is specified for large-scale dynamical 

systems. The systems are modeled by an interconnected 

system under multi-scale information exchange networks and 

the cost is minimized using an algebraic approach. In [18] 

both continuous and discrete time consensus problems are 

studied for multi-agent systems with linear time-invariant 

agent dynamics over randomly switching topologies. In 

addition, the effect of Markovian switching topologies and 

random link failures on consensus are revealed. In [19] a 

problem of 𝐻∞ consensus for nonlinear multi-agent systems 

with time-delay is investigated. A dynamic output feedback 

protocol is designed such that the multi-agent system reaches 

consensus in mean square with a prescribed 𝐻∞ performance 

level. In [20] a class of consensus protocols are presented for 

directed networks of agents with general linear dynamics and 

synchronous intermittent information. In addition, some 

analytical results on consensus tracking of multi-agent 

systems with switching directed communication topologies 

are investigated. X. Wu et al study the distributed exponential 

consensus of delayed multi-agent systems with nonlinear 

dynamics under asynchronous switching [21]. L. D. Alvergue 

et al. investigate the output consensus control for continuous-

time heterogeneous MASs, aimed at synchronizing all the 

agent’s output to the desired trajectory generated by a 

reference model [22]. The controller synthesis is based on 𝐻∞ 

loop shaping and LQG/LTR methods, thereby the local 

optimality and stability robustness is ensured. In [23] the 

consensus control problems are reviewed along with the 

recent progress on stochastic MASs and the latest results on 

consensus analysis and protocol design issues for MASs are 

presented. A new pre-tuning multivariable PID (Proportional 

Integral Derivative) controllers' method for quadrotors has 

been investigated by R. Guardeño et al. [24]. A procedure 

based on LQR theory is proposed for attitude and altitude 

control. In this procedure a considerable simplification is 

supposed for the design problem, since only one pre-tuning 

parameter is used. The results show that the design method 

proposed for multivariable PID controllers is robust in the 

face of uncertainties and external disturbances acting at plant 

input. In [25] the consensus protocol for linear multi-agent 

systems with communication noises are studied. Each agent 

is allowed to have its own time-varying gain to attenuate the 

effect of communication noises. It is proved that if all noise-

attenuation gains are infinitesimal of the same order, then the 

mean square leader-following consensus can be reached. 

Furthermore, the convergence rate of the multi-agent system 

and the steady-state performance and the transient 

performance are investigated. In [26] has been investigated 

the control of continuous-time linear Gaussian systems over 

additive white noise wireless fading channels subject to 

capacity constraints. It is shown that a separation principle 

holds between the design of the communication and the 

control subsystems, implying that the controller that would be 

optimal in the absence of the communication channel is also 

optimal for the problem of controlling the system over the 

communication channel. In [27] the problem of reduced order 

LQG optimization is investigated in a finite horizon, linear 

time-varying system setting. The authors in this reference 

provide first-order necessary conditions for local optimality 

in the parameter space using four coupled matrix differential 

equations. 

This paper is the extension of reference [33] that was 

published by these authors and was selected as a top paper in 

AREE2021 conference. In this paper a method is proposed in 

which it is assumed that the communication topology 

between the leader and its neighbors depends upon bounded 

and time-invariant functions. To the best of our knowledge, 

this idea has not been investigated so far especially for agents 

with high order dynamics. In this study, the LQR and LQG 

methodology based on the Riccati equation and algebraic 

graph theory is employed to show the convergence of 

followers to leader optimally, while the communication link 

between the leader and its neighbors are fixed over time. 

The paper is organized as follows: In Section 2 some 

notations on graph theory and Kronecker product are phrased. 

Then, in Section 3 system dynamics and basic mathematical 

foundation and assumptions are discussed. In Section 4, the 

proposed LQR and LQG controllers are designed. Section 5 

presents the simulation results and comparing controllers, and 



F. Azadmanesh et al.  Journal of Applied Research in Electrical Engineering, Vol. 2, No. 2, pp. 136-144, 2023 

138 

 

 

in Section 6, the paper is concluded and the future research 

work is proposed. 

2. GRAPH THEORY AND KRONECKER PRODUCT 

A directed graph is denoted as 𝐺 = (𝑉, 𝐸) where 𝑉 =
{1,2, … , 𝑁} is a finite and non-empty set of nodes (each node 

denotes the follower and there is N followers for 𝑖 =
{1,2, … , 𝑁} and also 𝐸 ⊂ 𝑉 × 𝑉 is a set of edges, each edge 

denotes an ordered pair of nodes). An edge (𝑣𝑖 , 𝑣𝑗) in an 

undirected graph shows that the agent 𝑖 can access the 

information of the agent 𝑗 and it means that the agent 𝑗 is the 

neighbor of agent 𝑖. An adjacency matrix is 𝐴𝑎 = [𝑎𝑖𝑗] ∈

𝑅𝑁×𝑁. Moreover, it is assumed that 𝑎𝑖𝑖 = 0 for 𝑖 =
{1,2, … , 𝑁}. The set of neighbors of agent 𝑖 is denoted by 

𝑁𝑖 = {𝑗|(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸}, Define the degree matrix as 𝐷 =

𝑑𝑖𝑎𝑔{𝑑1, … , 𝑑𝑁} with 𝑑𝑖 = ∑ 𝑎𝑖𝑗𝑗∈𝑁𝑖
. The symmetric 

Laplacian matrix corresponding to the directed graph 𝐺 is 

defined as follows: 

𝐿 = (𝐷 − 𝐴𝑎) ∈ 𝑅𝑁×𝑁 (1) 

The leader agent is represented by vertex 𝐿 and 

information is exchanged between the leader and the 

followers that are the neighbors of the leader [28]. A tool that 

is very useful in modeling and manipulating equations 

governing group motion is the Kronecker product ⨂ [29]. 

Kronecker product is also known as tensor product or direct 

product. Suppose 𝐶 is the field of mixed numbers and 𝐶𝑚×𝑛 

is a set of matrices containing 𝑚 rows and 𝑛 columns with 

mixed elements. For any matrices, 𝐴 = [𝑎𝑖𝑗] ∈ 𝐶𝑚×𝑛 and 

𝐵 ∈ 𝐶𝑝×𝑞 their Kronecker product denoted as 𝐴⨂𝐵 ∈
𝐶𝑚𝑝×𝑛𝑞, is defined by: 

𝐴⨂𝐵 = [𝑎𝑖𝑗𝐵] = [
𝑎11𝐵 … 𝑎1𝑛𝐵

⋮ ⋱ ⋮
𝑎𝑚1𝐵 … 𝑎𝑚𝑛𝐵

] (2) 

For example, if �̇� = 𝐴𝑥𝑖 represents the dynamics of a 

single agent, the dynamics of N identical agents can be 

represented as �̇� = (𝐼𝑁⨂𝐴). Another important case is when 

𝐴 is an 𝑁 × 𝑁 order matrix representing the manipulation of 

scalar data from 𝑁 agents, and that the manipulation needs to 

be applied to each value of a vector of length 𝑛. In that case, 

the manipulation can be represented by concatenating the 𝑁 

vectors of length 𝑛 into a single vector of length 𝑁𝑛, and 

multiplying it by 𝐴⨂𝐼𝑛. The following property of the 

Kronecker product: 

(𝐴⨂𝐵)(𝐶⨂𝐷) = (𝐴𝐶)⨂(𝐵𝐷) (3) 

can be proved when all matrix operations are well-defined 

[30]. In particular one of the most important properties of the 

Kronecker product is as follows: 

𝐴⨂𝐵 = (𝐴⨂𝐼𝑝)(𝐼𝑛⨂𝐵) = (𝐼𝑚⨂𝐵)(𝐴⨂𝐼𝑞) (4) 

3. PROBLEM STATEMENT 

Consider a MAS consisting of N followers and a leader. 

The dynamics of followers are linear nth order system is as 

follows: 

{
𝑥�̇� = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 ,    𝑖 = 1, … , 𝑁

𝑦𝑖 = 𝐶𝑥𝑖
 )5( 

where 𝑥𝑖 = [𝑥𝑖1, . . . , 𝑥𝑖𝑛]𝑇 ∈ 𝑅𝑛 represents the states of agent 

𝑖 and also the term  𝑢𝑖 = [𝑢𝑖1, . . . , 𝑢𝑖𝑚]𝑇 ∈ 𝑅𝑚 shows the 

control inputs of agent 𝑖. The matrices 𝐴 ∈ 𝑅𝑛×n and 𝐵 ∈
𝑅𝑛×m are constant and represent the behavior of each 

follower [31]. The compact form of dynamics for 𝑁 followers 

is as follows: 

{
�̇� = (I𝑁A)X + (I𝑁B)U

𝑌 = (I𝑁C)X
 (6) 

where 𝑋 = [𝑥1, . . . , 𝑥𝑁]𝑇, and 𝐼𝑁 = 𝑒𝑦𝑒(𝑁) and 𝑁 is the 

number of agents.  

The leader is the agent that is indexed by 𝐿, and the 

followers are the agents that are indexed by 𝑖 = 1, … , 𝑁. The 

leader which is labelled with 𝑖 = 𝐿 has linear nth order 

dynamics is as follows: 

{
�̇�𝐿 = 𝐴𝑥𝐿 +  𝐵𝑢𝐿  

𝑦𝐿 = 𝐶𝑥𝐿
 

(7) 

where 𝑥𝐿= [𝑥𝐿1, . . . , 𝑥𝐿𝑛]𝑇 ∈ 𝑅𝑛 shows the states of the leader. 

Obviously, the dynamics of the leader is independent of the 

others, has no input, and is an autonomous system, and is not 

affected by any of the followers. In this paper, the system 

matrices are considered the same for all followers and as well 

as the leader, because this case has practical background such 

as birds group, fishes school, etc. The compact form of leader 

dynamics is as follows: 

{
�̇�𝐿 = (I𝑁A)𝑋𝐿  +  (I𝑁B)U𝐿 

𝑌𝐿 = (I𝑁C)X𝐿

 (8) 

where 𝑋𝐿 = 𝐼𝑥𝐿, 𝐼 = 1 𝐼𝑛 and 1 is the 𝑁-vector of ones. 

In this paper, the problem of designing distributed input 

law of U, which includes the inputs of all followers (i.e., 

𝑢𝑖 , 𝑖 = 1, … 𝑁) to achieve leader-follower consensus is 

investigated, which is discussed in the following definition. 

Definition 1: The leader-follower consensus of system 

(5) and (7) is said to be achieved, if for each follower 𝑖 ∈
{1, … , 𝑁}, there is a local state feedback controller 𝑢𝑖 of 
{𝑥𝑖|𝑗 ∈ 𝑁𝑖} such that the closed-loop system satisfies the 

following equation [32]: 

lim
𝑡→∞

‖𝑥𝑖(𝑡) − 𝑥𝐿(𝑡)‖ = 0, 𝑖 = 1, … , 𝑁 (9) 

for any initial condition 𝑥𝑖(0), 𝑖 = 1, … , 𝑁. 

Consider the neighbourhood tracking error of the 

follower as follows: 

𝑒𝑖 =  ∑ 𝑎𝑖𝑗

𝑗∈𝑁𝑖

(𝑥𝑗 − 𝑥𝑖) + 𝑏𝑖(𝑥𝐿 − 𝑥𝑖) (10) 

If 𝑥𝑖 ∈ 𝑅𝑛, then the overall error form is: 

𝐸 = ((𝐿 + 𝐵𝑏)  𝐼𝑛)(𝑋𝐿 − 𝑋) (11) 

where 𝐼𝑛 = 𝑒𝑦𝑒(𝑛) and 𝑛 is the number of states, and 𝐵𝑏 =
  𝑏𝑖  𝐼𝑁 and 𝐸 = [𝑒1(𝑡), … , 𝑒𝑁(𝑡)]𝑇 ∈ 𝑅𝑁 is the vector of 

overall error. As the main contribution of this article, it is 

assumed that the communication topology between the leader 

and its neighbors is bounded and also depends on functions. 

The time derivative of this error along the compact form of 

dynamics of (6) and (8) is as follows: 

�̇� = ((𝐿 + 𝐵𝑏)  𝐼𝑛)(�̇�𝐿 − �̇�) (12) 
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Consider the following change of variable: 

�́� =   𝐼𝑁  A (13) 

�́� =   𝐼𝑁  B (14) 

Putting the equations of �́� and �́� in the overall error 

dynamics result that, finally the total error dynamics is as 

follows: 

�̇� = ((𝐿 + 𝐵𝑏)𝐼𝑛)�́�((𝐿 + 𝐵𝑏)𝐼𝑛)
−1

𝐸

− ((𝐿 + 𝐵𝑏)𝐼𝑛)�́�𝑈 
(15) 

Consider the following relationships: 

𝐴𝑛 = ((𝐿 + 𝐵𝑏) 𝐼𝑛 )𝐴 ́ ((𝐿 + 𝐵𝑏)𝐼𝑛))−1 (16) 

𝐵𝑛 = ((𝐿 + 𝐵𝑏)𝐼𝑛)�́� (17) 

Replacing 𝐴𝑛 and 𝐵𝑛 from the above equations in (15), 

�̇� is obtained as shown in (18). 

�̇� =  𝐴𝑛𝐸 − 𝐵𝑛𝑈 (18) 

4. DESIGNING LEADER-FOLLOWER CONSENSUS 

CONTROLLER  

In this section, the time-invariant overall leader-follower 

consensus controller of U which consists of the inputs of all 

followers (i.e., 𝑢𝑖 , 𝑖 = 1, … 𝑁) is designed. The LQG and 

LQR controllers are designed as follows. 

The LQR cost function is as follows: 

𝐽 =  ∫(𝐸𝑇 𝑄𝑖𝐸 + 𝑈𝑇𝑅𝑖𝑈)𝑑𝑡 (19) 

Where matrix 𝑄𝑖is positive semidefinite symmetric and 

matrix 𝑅𝑖 is positive definite symmetric. 

A hamiltonian function is derived as follows: 

𝐻 =  
1

2
𝐸𝑇𝑄𝐸 + 

1

2
𝑈𝑇𝑅𝑈 + 𝑝𝑇(𝐴𝑛𝐸 − 𝐵𝑛𝑈) (20) 

By calculating 
𝜕𝐻 

𝜕𝐸
 co-state equation, �̇� is obtained as 

follows: 

�̇� = −𝑄𝐸 − 𝐴𝑛
𝑇𝑝 (21) 

Using the sufficient condition 
𝜕𝐻

𝜕𝑈
= 0 and after some 

mathematical manipulations, 𝑈 is obtained as follows: 

𝑈 =  𝑅−1 𝐵𝑛
𝑇𝑝 (22) 

Replacing 𝑈 in (18), derives the following relation: 

�̇� = 𝐴𝑛𝐸 − 𝐵𝑛𝑅−1𝐵𝑛
𝑇𝑝 (23) 

The following Riccati equation for LQR is obtained: 

�̇� + 𝐾𝐴𝑛 + 𝐾𝐴𝑛
𝑇 + 𝑄 − 𝐾𝐵𝑛𝑅−1𝐵𝑛

𝑇𝐾 = 0 (24) 

Now the distributed overall control law can be considered as 

(25). 

U=KE (25) 

The LQG cost function is as follows: 

𝐽 = 𝐸(𝑥(𝑡𝑓)
𝑇 𝐻𝑥(𝑡𝑓) + ∫(𝐸𝑇 𝑄𝑖𝐸 + 𝑈𝑇𝑅𝑖𝑈)𝑑𝑡) (26) 

The following Riccati equation for LQG is obtained: 

−�̇� = 𝐴𝑇𝑆 + 𝑆𝐴 − 𝑆𝐵𝑅−1𝐵𝑆 + 𝑄 (27) 

The Riccati equation was calculated in the final condition 

𝑆𝑡𝑓
= 𝐻 and the system interest was obtained as follows: 

𝐾 = 𝑅−1𝐵𝑇𝑆 (28) 

Now consider the distributed overall control law as follows: 

U=KE (29) 

5. SIMULATION RESULTS 

In this section, the proposed methodology is applied to 

the following system. Suppose that a connected, fixed, and 

directed communication network is depicted in Fig. 1 which 

is shown by the Laplacian matrix (𝐿). The adjacency matrix 

of the above MAS is as follows: 

𝐴𝑎 = [

0  0  0  1
1  0  0  1
0  1  0  0
0  1  1  0

] (30) 

𝐿 = [

1 0 0 −1
−1 2 0 −1
0 −1 1 0

0 −1 −1 2

] (31) 

In this network, there are one leader and four followers. 

Bounded and functions for leader adjacency matrix are used, 

to keep the connectivity of the network. This means that if the 

network of agents is initially connected, it will stay connected 

as time passes. 

The dynamics of each agent is a linear nth time-invariant 

high order system, which is relevant to the control of the 

Robot kinematics system. The attention that there are 4 

followers which are shown by 𝑖 = 1, … ,4 and the leader is an 

agent which is shown by 𝑖 = 𝐿: 

 

Fig. 1: The fixed and directed communication graph G for 

the MAS with one leader and four followers. 

{
𝑥�̇� = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 + 𝜉𝑖

𝑦𝑖 = 𝐶𝑥𝑖 + 𝜂𝑖
 (32) 
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{
𝑥�̇� = 𝐴𝑥𝐿 + 𝐵𝑢𝐿

𝑦𝐿 = 𝐶𝑥𝐿
 (33) 

In which the 𝜉𝑖 is state noise and the 𝜂𝑖 is output noise. The 

variance and mean noises are considered as follows: 

𝜉𝑖 ≃ (1.1673 × 10−6, 1.0077 × 10−8) (34) 

𝜂𝑖 ≃ (0.0012, 0.0101) (35) 

Consider the system matrices as follows: 

𝐴 = [
0 1

−1 −2
] (36) 

𝐵 = [
0
1

] (37) 

𝐶 = [1  0] (38) 

It is easy to investigate that 𝐴 and 𝐵 are stabilizable, as 

well as in here the matrix 𝐴 is stable. 

In the simulation the initial conditions for the agents are 

considered as follows: 

𝑥1(0) =  [
0.1
0.2

], 𝑥2(0) =  [
0.3
0.4

], 𝑥3(0) = [
0.5
0.6

], 𝑥4(0) = [
0.7
0.8

] 

, 𝑥𝐿(0) =  [
1
2

] 

5.1. LQR Controller 

The LQR controller has been implemented on the above 

system. The results and the diagrams are shown in the 

following. 

Under the proposed compact form of control law (25), 

the states of each follower track the states of the leader 

starting from any initial conditions. Figs. 2 and 3 show the 

difference between the first states of all followers and the 

leader, and the difference between the second states of all 

followers and the leader, respectively. As seen in Fig. 2, the 

first state of the follower is converged to the first of the leader. 

Also, Fig. 3 reveals that the second state of the followers 

converges asymptotically to zero. The control input of each 

follower is 𝑢𝑖 ∈ 𝑅1. Figs. 4 and 5 demonstrate the LQR 

controller input and the LQR Lagrange coefficient of all 

followers, respectively. Lagrange coefficients are the effect 

of states on the Hamiltonian, which tend to zero. 

 

Fig. 2: The first states of followers and leader. 

 

Fig. 3: The second states of the all followers and the leader. 

 

Fig. 4: The control inputs of the followers. 

 

Fig. 5: The LQR Lagrange coefficient. 

The consensus tracking errors of the first and the second 

states of the followers in the LQR controller design procedure 

are shown on Figs. 6 and 7, respectively. According to these 

figures, the consensus is well done. The results of the 

simulation show the hopeful efficiency of the proposed 

controller for MAS with fixed topology. The simulation 

results show the limitation of the control inputs, a 

convergence of the consensus error to zero, and the promising 

optimal performance with fixed topology. 

5.2. LQG Controller 

The LQG controller has been applied to the proposed 

system, the results and the diagrams are shown as follows. In 

Figs. 8 and 9 the first states of all followers and the leader and 
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the second states of all followers and the leader is shown, 

respectively. 

According to the figure, the first states of the followers lead 

to the first states of the leader. According to the figure, the 

second states of the followers proceed to the second states of 

the leader too. The states of each follower track the states of 

the leader starting from any initial conditions. It has been 

shown that all states of followers track the states of leader 

according to the proposed methodology. In the following 

figure, the LQG controller input is depicted as. In the 

following figure, the LQG Lagrange coefficients of all 

followers are displayed. 

 

Fig. 6: The consensus errors of the first states of followers. 

 

Fig. 7: The consensus errors of the second states of 

followers. 

 

Fig. 8: The first states of followers and the leader. 

 

Fig. 9: The second states of the all followers and the leader. 

 

Fig. 10: The control inputs of the followers. 

 

Fig. 11: The LQG Lagrange coefficient. 

In the LQG controller design procedure, the consensus 

tracking errors of all states of the followers are shown as 

below. According to the figures, the consensus is well done. 

The results of the simulation show the hopeful performance 

of the proposed controller for the MAS with fixed topology 

and the limitation of the Control inputs, the convergence of 

the Consensus error to zero, and the optimal performance. 

5.3. Comparison of LQR and LQG Tracking Error 

The LQR and LQG tracking error is compared based on 

the Integral Square Error criterion in the following table. 

According to the table it is observed that convergence speed 

of the LQR methodology implemented is more than the LQG 

methodology. 
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Fig. 12: The consensus errors of the first states of followers. 

 

Fig. 13: The consensus errors of the second states of 

followers. 

Table 1: ISE for LQR and LQG. 

ISE LQR LQG 

e1 0.1725 0.4808 

e2 0.0682 0.1573 

e3 1.1215 3.1002 

e4 0.3194 0.7639 

e5 2.9018 8.0021 

e6 0.7634 1.8476 

e7 5.5135 15.1869 

e8 1.4003 3.4084 

6. CONCLUSIONS 

In this paper, the distributed leader-follower consensus 

of MAS is derived based on LQR and LQG under fixed, 

directed topology. The dynamics of each agent was a linear 

high order system. The distributed optimal controller is 

designated to reach a consensus for both the deterministic and 

stochastic MAS. The convergence of consensus error to zero 

in presence of the Gaussian noise is guaranteed. The 

prescribed gain and phase margin are achieved in our 

approach. The simulation results also indicated the promising 

efficiency of the presented methodology in stochastic and 

deterministic cases. Future research should focus on the 

formation of stochastic systems and the consensus of 

nonlinear MAS.  
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