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Abstract: The Combined Economic Emission Dispatch (CEED) is an important consideration in every power system. In 

this paper, a modified Mayfly Algorithm named Modified Individual Experience Mayfly Algorithm (MIE-MA) is used 

to solve the CEED optimization problem. The modified algorithm enhances the balance between exploration and 

exploitation by utilizing a chaotic decreasing gravity coefficient. Additionally, instead of the MA relying solely on the best 

position, it calculates the experience of a mayfly by averaging its positions. The CEED problem is modeled as a nonlinear 

optimization problem constrained with four equality and inequality constraints and tested on a grid-connected microgrid 

that consists of four dispatchable distributed generators and two renewable energy sources. The performance of the MIE-

MA on the CEED problem is compared to Particle Swarm Optimisation (PSO), an MA variant that incorporates a levy 

flight algorithm named IMA and Dragonfly Algorithm (DA) using the MATLAB R2021a software. The MIE-MA 

achieved the best optimum cost of 11306.6 $/MWh, compared to 12278.0 $, 12875.8$, and 17146.4$ of the DA, IMA, and 

PSO respectively. The MIE-MA also achieved the best average optimum cost over 20 runs of 12163.48 $, compared to 

12555.36 $, 13419.67 $, and 17270.08 $ of the DA, IMA, and PSO respectively. The hourly cost curve of the MIE-MA was 

also the best compared to the other algorithms. The MIE-MA algorithm thus achieves superior optimal values with fewer 

iterations. 
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1. INTRODUCTION 

Optimal operations and effective planning of electric 

power generation systems are critical elements in electric 

power systems. Problems relating to controlling, operating, 

and economic dispatch of power generation resources are still 

being addressed [1]. Economic dispatch power generation 

resources are useful in finding the right balance between 

system performance and cost of operation [2, 3]. Tradition-

ally, the effects of emissions due to power system operations 

were not considered in the economic dispatch problem. 

However, due to environmental concerns such as global 

warming and pollution, it has become necessary to add an 

emission cost component to the economic dispatch problem. 

This is collectively known as the Combined Economic 

Emission Dispatch (CEED), which aims to mitigate emission 

levels from all generating units and promotes the transition 

towards a sustainable and environmentally friendly power 

generation paradigm [3]. The addition of the emission 

component, and consideration of intermittent renewable 

sources in the CEED problem increases the complexity of the 

problem due to the increase non-convexity, increased 

constraints, and decision variables, increased computational 

time and the need for trade-off between emission levels and 

economic cost. The CEED presents a highly nonlinear 

optimization problem with constraints such as link capacity 

limits, ramp rate limits, load-demand constraints, and the 

generator’s maximum capacity limit constraints and the non-

convexity significantly introduces multiple local optima, 

making it difficult to find the optimal solution. Due to this 

complexity, it is inefficient to employ conventional 

mathematical and numerical methods to solve the CEED 

problem, due to their high tendency to get stuck at local 

optimum [4]. More sophisticated nature-inspired metaheur-
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istic algorithms have been adopted to solve complex 

problems due to their effectiveness in achieving near-global 

or global solutions for complex nonlinear problems [5]. 

Metaheuristic algorithms, a computational intelligence 

paradigm, prove valuable in addressing such complex 

problems. They provide benefits including effortless 

application to continuous and discrete problems, convex and 

non-convex problems, reduced mathematical complexity, and 

effective search for global optimal solutions [6]. Over the 

years, metaheuristic algorithms have been applied to 

economic dispatch problems in microgrids. In [7] PSO was 

used to solve the CEED problem while considering demand 

response, uncertainty in load and RESs on a microgrid with 

four dispatchable DGs. In [8], Grasshopper Algorithm was 

used to solve the CEED problem in an IEEE system which 

has three thermal generators, the algorithm was shown to 

outperform FA and BA in achieving the CEED. In [9], 

Gravitational Search Algorithm (GSA) was used as an 

optimization tool to solve the CEED problem. The algorithm 

was shown to outperform the BBO algorithm in achieving the 

optimal CEED. In [10], Economic dispatch combined with 

emission dispatch was performed using the Crow Search 

Algorithm (CSA). CSA was shown to outperform PSO and 

GA in achieving the optimal CEED. The above algorithms 

still have issues with local stagnation and so researchers are 

coming up with new and improved algorithms to address 

these issues [11]. 

The Mayfly algorithm, one of the latest Swarm 

Intelligence Optimization Algorithms (SIOAs) is considered 

a promising algorithm and, it draws inspiration from the 

movement and mating behaviour of mayflies [12, 13]. It 

shows great promise with its improved capabilities in 

exploration and exploitation. It has been shown to outperform 

other algorithms such as PSO, Invasive Weed Optimisation 

(IWO), Bees algorithm (BA), GA, Differential Evolution 

(DE), Firefly Algorithm (FA), Harmony Search Algorithm 

(HSA), etc.  MA has been successfully applied by researchers 

to tackle complex problems [13]. For instance, in [14], for 

agricultural unmanned aerial vehicles (UAVs), it was used to 

solve a 2D path planning problem. In reference [15], MA was 

applied to tackle the optimal power flow problem in regulated 

electricity markets. Moreover, the algorithm has 

demonstrated advancements in Maximum Power Point 

Tracking (MPPT) for photovoltaic systems [11]. 

However, MA does have certain limitations, including 

premature convergence and stagnation. As a result, further 

contributions are required to address these issues. Other 

researchers have made some attempts to address the above 

problems. A modified version of MA known as PGB-IMA 

was presented in reference [13]. This variant selected the 

global best from the entire mayfly population, including both 

males and females, to enhance exploration capabilities. While 

this enhancement proved effective for unimodal functions, it 

exhibited slower convergence or local optima entrapment on 

multimodal functions. In [12], levy flight was employed to 

improve exploration in the MA for solving the CEED 

problem. However, this approach occasionally caused 

mayflies to fly out of smaller search spaces. Researchers 

introduced ModMA in reference [14]. This approach 

incorporated various techniques, including adaptive Cauchy 

method, exponent decreasing inertia weight, an improved 

crossover operator and decreasing inertia weight, to achieve 

a balance between exploitation and exploration within the 

MA. ModMA improved the convergence rate but still faced 

the challenge of local optima trapping. Consequently, further 

improvements are necessary to address the issues of local 

optima entrapment and premature convergence, thus 

enhancing the overall performance of MA. 

Therefore, this work proposes a modified MA that 

addresses the aforementioned deficiencies of the MA and 

consequently applies it to the CEED problem to obtain 

optimal results. The modification introduced in the algorithm 

focuses on individual experience, resulting in MIE-MA. This 

algorithm enhances mayfly movement to improve 

convergence rate and overcome local optima entrapment. 

This is achieved by replacing the personal best (pbest) in the 

original Mayfly Algorithm with personal experience (Pexp). 

Pexp is calculated as the average of all positions visited by a 

mayfly, ensuring equal contribution from all visited positions. 

This enables the mayflies to effectively explore their search 

spaces, avoiding premature stagnation and overlooking 

optimal solutions. As a result, the MIE-MA approach yields 

optimal solutions with fewer iterations. Additionally, the 

algorithm incorporates a chaotic decreasing gravity 

coefficient to strike a balance between exploration and 

exploitation. The innovation of this work lies in the 

modification of the mayfly algorithm by modifying the 

individual experience formula of the MA, adopting the 

chaotic decreasing gravity coefficient to the mayfly and 

applying it to a CEED problem in a grid-connected microgrid. 

The rest of the paper is structured as follows: Section 2 

describes the problem formulation, Section 3 describes the 

mayfly algorithms, Section 4 contains the proposed MIE-

MA, Section 5 illustrates the implementation of the MIE-MA 

on the CEED, Section 6 contains results and analysis and 

finally, Section 7 concludes the paper. 

2. PROBLEM FORMULATION 

The CEED problem is modeled as a nonlinear 

constrained optimization problem with both equality and 

inequality constraints [7]. 

2.1. Decision Vector 

For each hour, the decision vector consists of the power 

output of the dispatchable generators (DG) and the power 

exchanged with the upstream grid. i.e. 

𝑋 = [𝑃𝐷𝐺(1),  .  .  . , 𝑃𝐷𝐺(𝑁), 𝑃𝑔𝑟𝑖𝑑] 

where, 𝑃𝐷𝐺   is power output of dispatchable generators, N is 

the total number of dispatchable generators, and 𝑃𝑔𝑟𝑖𝑑 is 

power exchange with upstream grid. 𝑃𝑔𝑟𝑖𝑑 is positive when 

power is bought from the grid and negative when power is 

transferred to the upstream grid. 

2.2. Objective Function 

The cost of dispatchable DGs is denoted by equation (1), 

while their emission treatment cost is described by equation 

(2). 

𝐶𝑖(𝑃𝐷𝐺,𝑖) = 𝛼𝑖(𝑃𝐷𝐺,𝑖)
2

+ 𝑏𝑖𝑃𝐷𝐺,𝑖 + 𝑐𝑖           $/ℎ             (1) 

𝑒𝑚𝑖(𝑃𝐷𝐺,𝑖) = 𝑑𝑖(𝑃𝐷𝐺,𝑖)
2

+ 𝑒𝑖𝑃𝐷𝐺,𝑖 + 𝑓𝑖         $/ℎ            (2) 
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𝛼𝑖, 𝑏𝑖, and 𝑐𝑖 are operational cost coefficients, and 𝑑𝑖, 𝑒𝑖, and 

𝑓𝑖 are emission treatment cost coefficients for CO2, SO2 and 

NOx, respectively. 

The objective function includes the operation and 

emission costs, i.e., 

𝑂𝐹 = ∑ ∑ 𝐶𝑖 (𝑃𝐷𝐺,𝑖(𝑡)) +24
𝑡=1

𝑁𝐺
𝑖=1 ∑ ∑ 𝑒𝑚𝑖 (𝑃𝐷𝐺,𝑖(𝑡)) +24

𝑡=1
𝑁𝐺
𝑖=1

∑ 𝜌(𝑡)𝑃𝑔𝑟𝑖𝑑(𝑡) +24
𝑡=1 ∑ 𝛾𝑃𝑔𝑟𝑖𝑑(𝑡)24

𝑡=1                                    (3) 

where 𝜌(𝑡) is the market price at tth time, and 𝛾 is the emission 

factor of power purchased from upstream grid at the tth time. 

2.3. Constraints 

The constraints are power balance constraints, output 

limit constraints, ramp rate limits and power transfer limits. 

2.3.1.  Power balance 

𝑃𝑑(𝑡) = 𝑃𝑔𝑟𝑖𝑑(𝑡) + ∑ 𝑃𝐷𝐺,𝑖(𝑡)𝑁𝐺
𝑖=1 + ∑ 𝑃𝑟𝑒𝑛𝑒𝑤,𝑝(𝑡)𝑁𝑟𝑒𝑛

𝑝=1        

where 𝑃𝑟𝑒𝑛𝑒𝑤,𝑝(𝑡) is the power output of Pth renewable DG 

unit at the tth time, and 𝑁𝑟𝑒𝑛 is the total number of renewable 

DGs. 

2.3.2. Output limits 

The power output of each dispatchable DG must be 

within its output limits, i.e.  

𝑃𝐷𝐺,𝑖,𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺,𝑖(𝑡) ≤ 𝑃𝐷𝐺,𝑖,𝑚𝑎𝑥 

2.3.3. Ramp rate limits 

The gradient of change of the output of the DG must be 

limited, i.e., 

𝑃𝐷𝐺,𝑖(𝑡) − 𝑃𝐷𝐺,𝑖(𝑡 − 1) ≤ 𝑅𝑈𝐷𝐺,𝑖 

𝑃𝐷𝐺,𝑖(𝑡 − 1) − 𝑃𝐷𝐺,𝑖(𝑡) ≤ 𝑅𝐷𝐷𝐺,𝑖 

2.3.4. Power transfer limits 

To comply with the power flow limit of the link 

connecting the microgrid and the upstream grid, it is 

necessary to ensure that the following equation is met: 

−𝑃𝑡𝑟𝑎𝑛𝑠𝑓,𝑚𝑎𝑥 ≤ 𝑃𝑔𝑟𝑖𝑑(𝑡) ≤ 𝑃𝑡𝑟𝑎𝑛𝑠𝑓,𝑚𝑎𝑥 

3. MAYFLY ALGORITHM 

The MA mimics the way mayflies fly and mate. It is a 

combination of the  major pros of PSO [16], FA [17], and GA  

[18]. The MA consists of  the following 6 phases [4]: 

3.1. Initialisation 

During this phase, a random set of male and female 

mayflies is generated. Each mayfly is assigned a current 

velocity (vi) and position (xi), denoted as vi = (vi1, vi2, ..., vin) 

and xi = (xi1, xi2, ..., xin), respectively. The positions of the 

mayflies are then adjusted using information from their best 

position (pbest) and the best position in the entire population 

(gbest). 

3.2. Male Mayfly Movement 

The position is updated by adding to the position, a 

velocity 𝑣𝑖
𝑡+1. For male mayflies, the velocity is expressed as 

𝑣𝑖𝑗
𝑡+1 = 𝑣𝑖𝑗

𝑡 + 𝑎1𝑒−𝛽𝑟𝑝
2
(𝑝𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑥𝑖𝑗

𝑡 ) + 𝑎2𝑒−𝛽𝑟𝑔
2
(𝑔𝑏𝑒𝑠𝑡𝑗 −

𝑥𝑖𝑗
𝑡 )                                             

In the given equation, the visibility coefficient is denoted 

as β, and a1 and a2 represent positive constants representing 

attractionrefers to the best position attained by the male 

mayfly indexed as "i" in dimension "j". The variables "rp" and 

"rg" represent the Euclidean distances between the position 

"xi" and the individual best position (pbest) and the global 

best position (gbest), respectively. g is the gravity coefficient 

and  is typically a fixed number ranging from 0 to 1. 

3.3. Female Mayfly Movement 

Female mayflies move towards male mayflies i.e. 𝑦𝑖
𝑡+1 =

𝑦𝑖
𝑡 + 𝑣𝑖

𝑡+1, y denotes position of the female mayfly. For male 

mayflies, the velocity is expressed as: 

𝑣𝑖𝑗
𝑡+1 = {

𝑔 ∗ 𝑣𝑖𝑗
𝑡 + 𝑎2𝑒−𝛽𝑟𝑚𝑓

2

(𝑥𝑖𝑗
𝑡 − 𝑦𝑖𝑗

𝑡 ),  𝑖𝑓 𝑓(𝑦𝑖) > 𝑓(𝑥𝑖).

𝑔 ∗ 𝑣𝑖𝑗
𝑡 + 𝑓𝑙 ∗ 𝑟,  𝑖𝑓𝑓(𝑦𝑖) ≤ 𝑓(𝑥𝑖).

 

The velocity and position of the i-th female mayfly in 

dimension j at iteration t are respectively represented by 𝑣𝑖𝑗
𝑡  

and 𝑦𝑖𝑗
𝑡 . The attraction constant is denoted as "a2" and the 

visibility coefficient is represented by "β". The variable "rmf" 

indicates the Euclidean distance between the female mayfly 

indexed as "i" and the male mayfly indexed as "i". The 

random walk coefficient, "fl", signifies that a female may not 

be attracted to a male. Additionally, r represents a random 

value ranging from -1 to 1. 

3.4. Mating Mayflies 

This enhances exploration through communication 

between mayflies by producing offsprings off1 and off2. The 

crossover operator is used, i.e., off1 = r*m + (1-r) *f and off2 

= r*f+(1-r) *m, where m, f, and r are male mayfly, female 

mayfly, and a random number between 0 and 1, respectively 

3.5. Mutation of Mayflies 

This enhances the exploitation of the MA. This is 

expressed as  

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑛 = 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑛 +  𝜎𝑁𝑛(0,1). 

In this equation, σ represents the standard deviation, 

while Nn denotes the standard normal distribution. 

3.6. Reduction of Nuptial Dance and Random Walk 

This aids in striking a balance between exploitation and 

exploration. This is expressed as: 𝑑𝑡 = 𝑑𝑜𝛿𝑡,  0 < 𝛿 < 1 and 

𝑓𝑙𝑡 = 𝑓𝑙𝑜𝛿𝑡 ,  0 < 𝛿 < 1, respectively.  

In this equation, t represents the iteration counter, and δ 

is a fixed value in the range of (0, 1). 

3.7. Pseudocode of the Algorithm 

The pseudocode of the algorithm is shown below: 

 Define the objective function as f(x), where x represents 

the vector (𝑥1, . . . , 𝑥𝑑)𝑇. 

 Set the initial positions and velocities for the male 

population of mayflies. 

 Set the initial positions and velocities for the female 

population of mayflies. 

 Evaluate the solutions and determine the global best 

solution (gbest). 
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 Do while iteration<maximum iterations 

 Adjust the velocities and positions of both sets of 

mayflies. 

 Solve their objective function values. 

 Separate mayflies based on their objective function 

value. 

 Enable mating amongst them. 

 Use crossover operator to produce offspring. 

 Assign genders (male and female) to offspring 

randomly. 

 Do a replacement of worst solutions with best 

solutions. 

 reassign the personal best (pbest) and global best 

(gbest) solutions with their latest values. 

 End while 

 Show the final results. 

4. MODIFIED INDIVIDUAL EXPERIENCE MAYFLY 

ALGORITHM 

In the original Mayfly Algorithm (MA), each mayfly's 

position is adjusted based on its individual experience (pbest) 

and the experience of its neighbours. However, this approach 

may limit the contribution of mayflies that are consistently 

moving at a better rate than the global best (gbest), potentially 

leading to stagnation if the gbest is trapped in a local 

optimum. 

To address this issue, a modification is proposed. In this 

modified approach, the experience of a mayfly is calculated 

as the average of the positions it has visited in the search 

space. This enhanced representation provides a better 

understanding of how the mayflies are approaching the global 

optimum and ultimately yields optimal values in the search 

space. The formulation for this modification is as follows: 

𝑃𝑒𝑥𝑝,𝑖
𝑡 =

∑ 𝑥𝑖
𝑡𝑖𝑡𝑒𝑟

𝑡=1

𝑖𝑡𝑒𝑟
                                                                (4)  

where, 𝑃𝑒𝑥𝑝,𝑖
𝑡  is mayfly i-th experience at step t, iter is 

iteration number at current step, and 𝑥𝑖
𝑡 is mayfly i-th position 

at step t. 

To enhance the balance between exploration and 

exploitation in the Mayfly Algorithm (MA), a strategy of 

adopting a chaotic random decreasing gravity coefficient is 

implemented. This strategy is motivated by a study [5] that 

explored different weight strategies in Particle Swarm 

Optimization (PSO) and their impact on the algorithm's 

performance. The study found that a chaotic random 

decreasing inertia weight strategy yielded the highest 

accuracy. This strategy enables alternating between rough 

and fine search in all evolutionary processes [6]. 

In this work, a slightly modified version of the chaotic 

random decreasing inertia weight strategy is utilized. The 

formulation for this strategy is as follows: 

𝑔 = (𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) ∗ (
𝑀𝑎𝑥𝐼𝑡−𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡
) + 𝑔𝑚𝑖𝑛 ∗ 𝑧           (5) 

𝑧 = 4 ∗ 𝑧 ∗ (1 − 𝑧) 

where gmax and gmin represent the maximum and minimum 

inertia weights, respectively, and z is a number randomly 

picked between 0 and 1. 

5. IMPLEMENTATION OF THE MIE-MA ON THE CEED 

The studied grid connected microgrid consists of four 

dispatchable DGs (MTs) and two renewable energy sources 

as shown in Fig. 1 [7, 19]. 

The data used in this research consists of the operational 

characteristics of four dispatchable DGs (micro-turbines), 

day ahead power forecasts of the two renewable energy 

sources and the grid price for each hour. The data was 

obtained from [7]. Table 1 and Table 2 in the Appendix 

represent the utilized data. 

 

 

Fig. 1: Diagram of the studied system. 

 
Fig. 2: Flowchart of the Implementation method. 
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According to [19], for Micro-Turbines (MT), the 

emission of CO2, SO2 and NOx are 0.7239, 0.0036 and 0.1994 

kg/MWh respectively. For a macro grid, the emissions of 

CO2, SO2 and NOx are 0.8891, 1.8016 and 1.6021 kg/MWh 

respectively. The treatment cost for CO2, SO2 and NOx are 

0.0311, 2.1999 and 9.3332 $/kg, respectively [7]. Therefore 

di = fi = 0, ei= 1.8620, and γ = 18.9161. 

The optimal parameters for MIE-MA include maximum 

iterations=100, male and female population = 200 (each one), 

𝑎1 = 1, a2 = 1.5, 𝛽 = 2, d = 0.1, fl = 0.1, g = 0.8, 𝛿 = 0.77, 

gmax= 0.9, and gmin = 0.2. 

6. RESULTS AND DISCUSSION 

This section contains the results from the application of 

the MIE-MA on the CEED problem compared to a variant of 

the MA (IMA) [11] which incorporates levy flight algorithm, 

PSO and DA. The comparison parameters are optimum cost, 

average cost and standard deviation over 20 individual runs 

and hourly cost curves. 

6.1. Optimum Cost Value 

Table 3 shows the lowest value of the objective function 

obtained by each algorithm. It can be observed from the 

results above that the MIE-MA achieved the best optimal cost 

compared with PSO, DA and IMA, this is due to the superior 

exploration and exploitation abilities of the MIE-MA. 

6.2. Mean Cost Values Standard Deviation 

Table 4 shows the average optimum cost over 20 runs 

obtained by the various algorithms. It can be observed from 

the table above that the MIE-MA achieved the best average 

cost and standard deviation over 20 independent runs. This 

further shows the accuracy and consistency of the MIE-MA 

over the other algorithms.  

6.3. Hourly Cost Curves and Convergence Curve 

Fig. 3 illustrates the optimum cost of the objective 

function at each hour. It can be observed from the curves that 

for each hour, the MIE-MA consistently achieves a lower 

objective function value than the other algorithms. The 

convergence curve in Fig. 4 also shows the optimal cost 

achieved for each iteration in the final hour. The MIE-MA 

converged to its final value before the 700th iteration. 

6.4. Dispatch of DGs and Exchanged Power 

Table 5 shows the 24-hour dispatch results for the grid 

connected microgrid after the application of the modified 

individual experience mayfly algorithm. The negative values 

indicate a sale of power to the external grid. It can be observed 

from the dispatch that the power balance constraints, link 

capacity constraints, ramp rate limits and DG capacity limits 

are all respected. Furthermore, the dispatch indicates an 

effective sale of about 10.6MW over 24 hours to the external 

grid and for hours where the prices were higher (hours 12 to 

24- see appendix), the dispatch indicates an effective sale of 

about 18.5 MW. This represents extra money for the MG to 

offset some of its operation and emission treatment costs. 

 

 

 

Table 3: Optimum cost values of the various algorithms. 

Algorithm Optimum Value ($) 

MIE-MA 
11306.6 

ModLMA 
12875.8 

PSO 
17146.4 

DA 
12278.0 

 

Table 4: Average optimum cost and standard deviation over 

20 runs. 

Algorithm Average Value ($) 
Standard 

Deviation 

MIE-MA 12163.48 235.85 

IMA 13419.67 323.69 

PSO 17270.08 445.62 

DA 12555.36 277.75 

 

Fig. 3: Hourly cost curves. 
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Fig. 4: Convergence curve of the MIE-MA in solving the CEED. 

 

Table 5: Dispatch of DGs. 

T 
PDG,1 

(MW) 

PDG,2 

(MW) 

PDG,3 

(MW) 

PDG,4 

(MW) 

PGrid 

(MW) 

1 3.852 1.2083 1.0626 0.8104 1.7969 

2 1.2509 1.3581 0.9457 1.0152 3.9703 

3 1.9208 1.2048 0.8068 0.9873 3.5505 

4 4.3311 1.6524 0.8028 0.9074 1.3366 

5 5 1.6675 1.1183 1.1321 -0.4604 

6 4.813 3.6753 1.401 1.0374 -2.7628 

7 4.8629 4.9925 1.496 0.9214 -2.7726 

8 4.9768 3.9284 1.0741 0.8172 -0.5763 

9 3.8179 1.8088 1.0172 0.9024 3.0957 

10 4.5615 3.2682 1.6244 1.0409 0.9612 

11 4.7876 4.9833 0.9646 0.9939 -0.2693 

12 4.8209 5 2.6222 2.1431 -3.5097 

13 4.6665 4.553 2.9348 1.9861 -1.4302 

14 4.7749 4.9937 2.6383 1.919 -0.6257 

15 4.9885 4.6034 2.8459 2.3223 -0.6299 

16 4.795 4.5757 2.9824 2.5704 -0.5134 

17 4.9654 4.7553 2.7354 2.8849 -0.2609 

18 4.9627 4.3054 2.9717 2.8497 0.2308 

19 4.9167 4.774 2.2574 2.1228 0.7963 

20 4.7373 4.6856 2.8315 2.9606 -0.6249 

21 4.9526 4.8529 2.8159 2.1956 -1.3868 

22 4.9985 4.6579 2.7469 2.1934 -2.1666 

23 4.8887 4.4929 2.0285 2.328 -3.9179 

24 4.8532 4.8041 2.5814 1.643 -4.4316 

6.5. Operation and Emission Costs 

Table 6 represents the operation and emission treatment 

costs. Negative values indicate a profit. It can be observed 

that some gains are made in the emission treatment costs to 

offset some of the operational costs, leading to an overall 

lower CEED cost. 

 

Table 6: Hourly operation and emission treatment costs. 

T 
Operation Cost 

($/h) 

Emission Treatment 

Cost($/h) 

1 300.25 46.9 

2 256 83.62 

3 262.68 76.33 

4 314.5 39.61 

5 338.86 7.9 

6 371.82 -31.92 

7 380.69 -29.6 

8 398.91 9.21 

9 366.19 72.61 

10 449 37.73 

11 443.16 16.75 

12 389.93 -39.23 

13 524.8 -0.73 

14 574.99 14.84 

15 605.29 15.57 

16 623.73 18.08 

17 651.91 23.64 

18 701.89 32.47 

19 678.45 41.27 

20 627.2 16.52 

21 537.85 1.36 

22 480.67 -13.81 

23 356.76 -48.54 

24 338.58 -57.98 

7. CONCLUSION 

A modified Mayfly Algorithm has been developed, 

known as the Modified Individual Experience Mayfly 

Algorithm (MIE-MA). This algorithm incorporates changes 

to the individual experience of each mayfly and enhances the 

balance between exploitation and exploration capabilities. 

The MIE-MA has been applied to a CEED problem with four 

constraints. The considered grid-connected microgrid 

consists of four dispatchable DGs and two renewable DGs. 

The MIE-MA achieved the best optimum cost of 11306.6 $, 

compared to DA, IMA and PSO. This is an indication of the 

MIE-MA’s superior exploitation-exploration balance. The 

MIE-MA also achieved the best average optimum cost and 

standard deviation over 20 runs of 12163.48 $ and 

235.85$ compared to DA, IMA, and PSO. This is an 

indication of the superior accuracy and consistency of the 

MIE-MA over the other algorithms. The hourly cost curve 

also showed that the MIE-MA almost always outperformed 

the other algorithms in each hour. The MIE-MA can still be 

improved further by further enhancing its exploitation 

abilities and so future works should look at enhancing the 

MIE-MA or applying the MIE-MA to other engineering 

problems. 
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APPENDIX 

Table 1: Operational parameters of the DGs 

 DG1 DG2 DG3 DG4 

α ($/MWh) 0.03 0.025 0.02 0.02 

b ($/MWh) 27.7 39.1 61.3 65.6 

c($) 0 0 0 0 

Minimum 

Power (MW) 
1 1 0.8 0.8 

Maximum 

Power (MW) 
5 5 3 3 

Ramp-up 

limits (MW) 
2.5 2.5 3 3 

Ramp-down 

limits (MW) 
2.5 2.5 3 3 

 

Table 2: Day-ahead demand, renewable output and grid 

price. 

Hour 
Demand 

(MW) 

Renewable 

#1(MW) 

Renewable 

#2(MW) 

Grid 

price 

($/MWh) 

1 8.73 0 0 15.3 

2 8.54 0 0 10.97 

3 8.47 0 0 13.51 

4 9.03 0 0 15.36 

5 8.79 0.63 0 18.51 

6 8.81 0.8 0 21.8 

7 10.12 0.62 0 37.06 

8 10.93 0.71 0 22.83 

9 11.19 0.68 0 21.84 

10 11.78 0.35 0 27.09 

11 12.08 0.62 0 37.06 

12 12.13 0.36 0.75 68.95 

13 13.92 0.4 0.81 65.79 

14 15.27 0.37 1.20 66.57 

15 15.36 0 1.23 65.44 

16 15.69 0 1.28 79.79 

17 16.13 0.05 1 115.45 

18 16.14 0.04 0.78 110.28 

19 15.56 0 0.71 96.05 

20 15.51 0 0.92 90.53 

21 14.00 0.57 0 77.38 

22 13.03 0.60 0 70.95 

23 9.82 0 0 59.42 

24 9.45 0 0 56.68 
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