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Abstract: This work represents a new method for robustness analysis of the model reference adaptive controller (MRAC) 

in the presence of input saturation. Saturation is one of the nonlinear factors affecting the stability of control systems 

which must be considered in controller design and stability analysis experiments. Various methods are presented for the 

stability and robustness analysis of adaptive control systems, and employment of describing function (DF) can be 

attractive and practical, due to the appropriate effectiveness of DF in estimating limit cycles and also the application of 

quasi-linearization theory. In this work, the stability analysis and a limit cycle estimation of a saturated system in the 

frequency domain are performed. The controller parameters are adjusted in a way that the system achieves its stable 

limit cycle in the presence of the initial conditions for the states. Moreover, the efficiency of the proposed method for 

second-order systems is reported in the presence of symmetric saturation and uncertainty model in Rohrs’s 

counterexample as the unmodeled dynamics. The results demonstrate the proposed method provides a proper analysis 

of system stability during the changes in the control parameters and the saturation amplitude. 
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1. INTRODUCTION 

The signal level that a stimulus can deliver is usually 

limited by physical or safety constraints. These limits exist in 

all control systems including force, torque, voltage, and flow. 

The impact of amplitude saturation in the design of control 

system often depends on the control system performance. 

This effect is ignored in some systems and an appropriate 

functioning of most systems occurs when the amplitude 

saturation is taken into account [1-2]. Therefore, the 

controller design in the presence of saturation and its 

identification has recently been studied. One of the first works 

to address this issue is metaheuristic-based optimization 

algorithms [3]. The saturated system is identified using 

different optimization methods and described the differences 

between them. in addition, due to the destructive effects of 

saturation on the system, many controllers are vulnerable to 

the nonlinear factors due to the performance changes of the 

closed-loop system that often cause an instability in the 

system. In order to solve this issue, anti-windup compensators 

are designed by investigating the effects and properties of 

saturation on the system and controller to guarantee stability 

of the system as well as preventing the occurrence of 

saturation in the control systems. These designs are based on 

different definitions of saturation effects [4]. The 

investigation of the stability analysis and the stabilization of 

linear systems is performed in the presence of saturation and 

different kinds of Lyapunov functions such as polyhedral, 

quadratic and Lure which are used to model the saturation 

section to analyze the behavior of the closed-loop nonlinear 

system [5]. Additionally, there are several methods for 

designing anti-windups such as LMI [6-8]. Accordingly, a 

coefficient can be determined based on the optimal solution 

of LMI, which affects the controller state equations and 

provides stability of the loop system [9]. Moreover, the 

compensation design is also proposed that the main idea is 
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that they combine Nussbaum gain technique into 

backstepping control to compensate the saturation input, 

mainly used in spacecraft [10]. Other types of compensators 

including nonlinear multi-input and multi-output (MIMO) 

systems [11], ship steering control [12], switched nonlinear 

systems [13], and hydro-turbine governing systems [14] are 

also introduced. 

The model reference adaptive controller (MRAC) is an 

attractive method to design adaptive systems due to its 

acceptable performance. Accordingly, some compensators 

have been proposed for the MRAC in the presence of 

saturation. Modern compensators are used for the PID MRAC 

controller which is implemented on the practical system of 

the autonomous underwater vehicle (AUV) [15]. In addition 

to MRAC method, the positive µ method is proposed to 

reduce the saturation effects in the adaptive system in [16]. In 

the positive µ method, a coefficient known as μ is considered 

in the design of the control signal and affects the control 

signal when the system is saturated, consequently reduces the 

value of the signal. In addition to designing compensators in 

the presence of saturation, robustness analysis in the presence 

of unmodeled dynamics and uncertainties in a system is an 

important subject in the adaptive control [17]. Berk Altin and 

Kira Barton have shown how unmodeled dynamic (Rohrs 

counterexample [18]) causes instability in model reference 

adaptive iterative learning control (MRAILC) [19]. Eugene 

Lavretsky et al. have proposed a method based on the MRAC 

to investigate the general stability of the system with 

unmodeled dynamics [20]. The model reference adaptive 

controller was also used for the robustness of linear time-

variant systems with temporal delay [21]. In these works, the 

stability analysis of the adaptive control system has been 

carried out with the Lyapunov function -albeit in the absence 

of saturation - and presented methods for the robustness of 

the controller. 

One way to analyze the stability of nonlinear systems is 

the describing function. A frequency response method is a 

powerful tool for analyzing and designing linear control 

systems. However, frequency analysis cannot be applied 

directly for nonlinear systems because the frequency response 

function cannot describe the nonlinear system. Therefore, the 

describing function is used to approximate the analysis and 

estimate the nonlinear behaviors. The most important 

application of the describing function method is to estimate 

the limit cycle of nonlinear systems [22-24]. Additionally, the 

describing function has been examined in the analysis of 

nonlinear systems with memory [25-26]. Recently, the 

describing function is used for the robustness analysis of 

reference model adaptive systems in the presence of 

unmodeled dynamics and the describing function of the 

reference model adaptive controller [27]. 

In this work, the robustness of adaptive control systems 

to unmodeled dynamics has been upgraded to be used for 

second-order system with input saturation [27]. Adaptation, 

plant and saturation rules are converted into a lure model, 

which consists of a linear plant, nonlinear saturation on the 

forward path and an isolated nonlinear part in the feedback 

path. The describing function is then used to analyze the 

system in the frequency domain. By placing the DF of 

nonlinear parts and analysis via the Nyquist diagram, the 

prediction of the limit cycles of the system is achieved. The 

main goal of this work is to estimate the limit cycle the system 

and determine the approximate initial conditions for the 

adaptive system with nonlinear factors, which leads to the 

robustness of the system to reach its stable limit cycle. The 

application of the proposed method is investigated by 

simulating the second-order system in the presence of 

symmetric saturation and Rohrs counterexample as 

unmodeled dynamics. In addition, the rest of the paper is 

organized in a way to address the issues presented as follows. 

In Section II, the main problem is explained in the presence 

of saturation and the transformed parameters of the controller 

and the update rules obtained by transformations. In Section 

III, the describing function of the nonlinear parts is calculated 

and the limit cycle of the closed-loop system is estimated by 

drawing the Nyquist diagram. In Section IV, the second-order 

system with unmodeled dynamics and input saturation is 

included to indicate the usefulness of the proposed analysis 

method. 

2. PROBLEM DESCRIPTION 

In this section, the control system is explained in the 

presence of amplitude saturation. To simplify the analysis, 

new parameters are introduced, based on which updating 

rules are obtained. The second-order system under 

investigation has the following state equations (1). 

{
�̇�𝑝 = 𝐴𝑝𝑥𝑝 + 𝐵𝑝(𝜐(𝑡) + 𝑓(𝑥𝑝))

𝑓(𝑥𝑝) = 𝑘𝑝𝑥𝑝
        (1) 

where 𝑥𝑝 is a state variable, 𝐵𝑝 ∈ 𝑅
2×1 and 𝐴𝑝 ∈ 𝑅

2×2 are 

known and constant, (𝐴𝑝, 𝐵𝑝) are controllable, 𝑓(𝑥𝑝) is the 

linear state-dependent uncertainty, and 𝑣(𝑡) is the scalar 

input. The unmodeled dynamic is as (2): 

{
𝑥𝜂 = 𝐴𝜂𝑥𝜂(𝑡) + 𝐵𝜂𝑈𝑠𝑎𝑡(𝑡)

𝜐(𝑡) = 𝐶𝜂
𝑇𝑥𝜂(𝑡)

         (2) 

where 𝑥𝜂 ∈ 𝑅
𝑚×1, 𝐶𝜂

𝑇 ∈ 𝑅1×𝑚, and 𝐴𝜂 ∈ 𝑅
𝑚×𝑚 is a Hurwitz 

matrix with 𝐺𝜂 = 𝐶𝜂
𝑇(𝑠𝐼𝑚×𝑚 − 𝐴𝜂)

−1𝐵𝜂 and (𝐶𝜂
𝑇, 𝐴𝜂, 𝐵𝜂) are 

controllable and observable, 𝑈𝑠𝑎𝑡 is the saturated control 

input which is defined as written in (3). 

𝑈𝑠𝑎𝑡(𝑢) = {

𝑢𝑚𝑎𝑥                𝑖𝑓 𝑢 > 𝑢𝑚𝑎𝑥
𝑢  𝑖𝑓 − 𝑢𝑚𝑎𝑥 < 𝑢 < 𝑢𝑚𝑎𝑥

−𝑢𝑚𝑎𝑥                𝑖𝑓 𝑢 < −𝑢𝑚𝑎𝑥

 

𝑢 = 휃𝑇(𝑡)𝑥𝑝(𝑡)          (3) 

where 𝑢 is the control input which is calculated by the 

controller, 𝑢𝑚𝑎𝑥 is the maximum control signal that can be 

created by the stimulus, and 휃𝑇(𝑡) = [휃0  휃1] are the 

adaptation rules (4) (refer to Fig. 1). 

 

 
Fig. 1: The block diagram of the system in the presence of 

saturation. 
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휃̇ = −𝛤𝑥𝑝𝐵𝑝
𝑇 𝑃 𝑒          (4) 

where 𝑃 is obtained from solving the Lyapunov. 

In equations 𝐴𝑚
𝑇 𝑃 + 𝑃𝐴𝑚 = −𝑄, and 𝑒 = 𝑥𝑝 − 𝑥𝑚, 𝑥𝑚 

is the reference state variable and is defined as (5), and (6): 

�̇�𝑚 = 𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑟(𝑡) 

𝐴𝑚 = 𝐴𝑝 + 𝐵𝑝휃
∗𝑇          (5) 

𝐴𝑚 = 𝐴𝑝 + 𝐵𝑝(−𝐾𝐿𝑄𝑅
𝑇) 

휃∗ = −𝐾𝐿𝑄𝑅
𝑇           (6) 

where 𝑟(𝑡) is the reference input, 𝐴𝑚 and 𝐵𝑚 are the reference 

model state matrices, 𝐴𝑚 is a Hurwitz matrix, and 휃∗𝑇(𝑡) =
[휃0
∗ 휃1

∗] are the ideal adaptive rules. A linear designing 

technique is employed to determine 휃∗𝑇. The linear-quadratic 

regulator (LQR) method is chosen as a tool for reference 

model control design. 𝑅𝐿𝑄𝑅 and 𝑄𝐿𝑄𝑅 are its weight matrices 

and 𝐾𝐿𝑄𝑅 is its vector for control parameters. 

To simplify the analysis and determine the effect of saturation 

and unmodeled dynamic on the adaptive system, non-singular 

transformations are defined as equation (7): 

휀(𝑡) = 𝐶𝑒(𝑡) 

𝜈(𝑡) = 𝑀휃(𝑡)           (7) 

where 휀(𝑡) is the transformed error, 𝑣(𝑡) is the transformed 

parameter, 𝐶 and 𝑀 are the transform matrices. The transform 

matrices are defined as (8). The proof of the equations are 

expressed in reference [21-27]. 

𝐶 = [𝑐0 𝑐1]
𝑇   𝑀 = 𝑝𝑏𝐶𝑃

−1         (8) 

where 𝑝𝑏 = √𝐵𝑚
𝑇𝑃𝐵𝑚, and 𝐶 is defined as (9): 

𝑐0 = 𝑝𝑏
−1𝑃𝐵𝑚 ,  𝑐1𝑐1

𝑇 = 𝑃 − 𝑐0𝑐0
𝑇        (9) 

Remark 1 : From (8) and (9) the following equations can be 

obtained: 

𝑐𝑇0𝐵𝑚 = 𝑝𝑏 ,  𝑐𝑇1𝐵𝑚 = 0 

𝐶𝑃−1𝐶𝑇 = 𝐼 

Using (5) and (8) the 𝑛 × 𝑛  matrix below is determined 

as (10): 

�̃�𝑚 = 𝐶𝐴𝑚𝑃
−1𝐶𝑇 = (

𝛼00 𝑎1

𝑎0  �̃�𝑚
′) 

𝛼𝑖,𝑗 = 𝑐𝑖
𝑇𝐴𝑚𝑃

−1𝑐𝑗  ∀𝑖, 𝑗 = {0,1}      (10) 

where �̃�𝑚
′ ∈ 𝑅(𝑛−1)×(𝑛−1). It can be shown that �̃�𝑚

′  and �̃�𝑚 

are Hurwitz matrices. The error dynamic is defined as follows 

according to the closed loop system equation (11): 

�̇� = 𝐴𝑚𝑒 + 𝐵𝑝휃̃
𝑇𝑥𝑝 + 𝐵𝑝휂       (11) 

where  휂 = 𝑣 − 𝑈𝑠𝑎𝑡 is dependent on the saturated control 

input and the unmodeled dynamic, and 휃̃ = 휃 − 휃∗ is defined 

with 휃∗ in (6). The transformed error 휀�̇� = 𝐶𝑖
𝑇�̇� is obtained 

from (7) and (11) as equation (12). 

휀̇ = [
𝑐𝑇0𝐴𝑚𝑒 + 𝑝𝑏휃̃

𝑇𝑥𝑝 + 𝑝𝑏휂

   𝑐𝑇1𝐴𝑚𝑒
]                    (12) 

Considering Remark1 and using (10) and (12) the 

equation (13) is concluded: 

휀1̇ = �̃�𝑚
′ 휀1 + 𝑎0휀0         (13) 

휀0̇ can also be rewritten as (14): 

휀0̇ = (𝛼00 + 𝜈0)휀0 + (𝑎1 + 𝜈1)휀1+… 

                                      …+ 𝑝𝑏휂 + 𝜈0𝑚0 + 𝜈1𝑚1            (14) 

where 𝑣∗ = 𝑀휃∗, �̃�𝑖 = 𝑣𝑖 − 𝑣𝑖
∗, and 𝑚𝑖 = 𝐶𝑖

𝑇𝑥𝑚. The 

proposed adaptive rules are the revised standard adaptive 

rules using projection algorithm as (15). 

휃̇ = 𝑀−1�̇� 

�̇�𝑖 = 𝑝𝑟𝑜𝑗({𝑀휃}𝑖 , −{𝑀𝛤𝑥𝑝𝐵𝑚
𝑇𝑃𝑒}𝑖)                             (15) 

where 𝛤 = 𝛾𝑃  

𝑝𝑟𝑜𝑗(휃𝑖 , 𝑦𝑖) = 𝑓(𝑥) = {

휃𝑖 𝑚𝑎𝑥
2 − 휃𝑖

2

휃𝑖 𝑚𝑎𝑥
2 − 휃́𝑖

2
, 휃𝑖𝜖Ω𝑖Λ휃𝑖𝑦𝑖 > 0

𝑦𝑖 ,                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Ω𝑖 = {휃𝑖𝜖�́�|휃𝑖𝑚𝑎𝑥
′ ≤ 휃𝑖 ≤휃𝑖𝑚𝑎𝑥     

Ω𝑖 = {휃𝑖𝜖�́�|−휃𝑖𝑚𝑎𝑥 ≤ 휃𝑖 ≤ −휃𝑖𝑚𝑎𝑥
′   

Ω𝑖 = Ω𝑖⋃Ω𝑖                 

And the positive constant 휃𝑖,𝑚𝑎𝑥 > 휃
′
𝑖,𝑚𝑎𝑥.  

Remark 2 : It can be shown that if ∀𝑡 ≥ 𝑡𝑎    ‖휃𝑖(𝑡𝑎)‖ ≤
휃𝑖,𝑚𝑎𝑥 ⟹ ‖휃𝑖(𝑡)‖ ≤ 휃𝑖,𝑚𝑎𝑥 then the projection algorithm 

can guarantee the limitations of 휃𝑖which is independent of the 

system dynamic. 

Considering �̇�𝑖 = 𝑝𝑏𝐶𝑖
𝑇𝑃−1휃, and the transformed error 

as (16), 

�̇�𝑖 = 𝛾
′𝑝𝑟𝑜𝑗(𝜈𝑖 , (휀𝑖 +𝑚𝑖)휀0)       (16) 

in which 𝛾′ = 𝛾𝑝𝑏
2, Remark  2 guarantees that 𝑣𝑖

∗ will 

ultimately converge into the projection region. 

3. DESCRIBING FUNCTION 

The describing function is a classic tool to analyze the 

existence of the limit cycles in nonlinear systems based on the 

frequency response method [28]. The idea of the method is 

based on Gaussian linearization, so that the nonlinear part is 

considered as a single block, the describing function is a 

complex coefficient based on the main harmonics of the 

nonlinear system whose input is sinusoidal and its output is 

obtained through the Fourier series. The DF has many 

applications in nonlinear controllers and extensive researches 

have been performed where different methods such as Two-

Sinusoid-Input Describing Function (TSIDF) and Dual-Input 

Describing Function (DIDF) have been proposed [26-29]. 

Despite the favourable characteristics of the describing 

functions, it is rarely used in adaptive control because of the 

complexity of the analysis of nonlinear systems with memory 

[29]. In a recent study, the stability of the MRAC is analyzed 

and the describing function of the controller is calculated 

using the DF method [25]. Although the DF is an approximate 

method, it is superior to other methods for nonlinear system 

analysis due to the desirable properties of the frequency 

response technique. In the following section, the method of 

the obtaining the function is introduced first, based on that, 
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the main system is divided into two linear and nonlinear parts. 

Then, the DF of the nonlinear sections is calculated and the 

stability analysis of the system will be provided via plotting 

the Nyquist diagram. 

3.1. Calculating The Describing Function 

If the nonlinear section is considered as a block with a 

sinusoidal input of amplitude 𝐴 and the frequency𝜔, i.e., 

𝑥(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡), its output, 𝑤(𝑡), is often a periodic 

function, despite it often being a non-sinusoidal (Fig. 1). 

Using the Fourier series, the periodic function 𝑤(𝑡) can be 

extended as (17): 

𝑤(𝑡) =
𝑎0

2
+ ∑ [𝑎𝑛 𝑐𝑜𝑠( 𝑛𝜔𝑡) + 𝑏𝑛 𝑠𝑖𝑛( 𝑛𝜔𝑡)]

∞
𝑛=1      (17) 

where the Fourier coefficients 𝑎𝑛 and 𝑏𝑛, which are often a 

function of 𝐴 and 𝜔, are determined by the equations below:  

𝑎0 =
1

𝜋
∫ 𝑤(𝑡)𝑑(𝜔𝑡)
𝜋

−𝜋

 

𝑎𝑛 =
1

𝜋
∫ 𝑤(𝑡) 𝑐𝑜𝑠( 𝑛𝜔𝑡)𝑑(𝜔𝑡)
𝜋

−𝜋

 

𝑏𝑛 =
1

𝜋
∫ 𝑤(𝑡) 𝑠𝑖𝑛( 𝑛𝜔𝑡)𝑑(𝜔𝑡)
𝜋

−𝜋

 

The describing function should have some conditions, 

one of which being 𝑎0 = 0. Furthermore, the main 

component is considered in the Fourier series. That is 

equation (18): 

 

𝑤(𝑡) ≈ 𝑤1(𝑡) = 𝑎1 𝑐𝑜𝑠(𝜔𝑡) + 𝑏1 𝑠𝑖𝑛(𝜔𝑡) 
= 𝑀 𝑠𝑖𝑛(𝜔𝑡 + 𝜑)        (18) 

where 

𝑀(𝐴,𝜔) = √𝑎1
2 + 𝑏1

2  

𝜑(𝐴,𝜔) = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑎1
𝑏1)

 

Equation (18) represents the main component 

corresponding to a sinusoidal input which is a sinusoidal with 

the same frequency as the input. This sinusoidal can be 

written as follows in a complex display as (19): 

𝑤1 = 𝑀𝑒
𝑗(𝜔𝑡+𝜑) = (𝑏1 + 𝑗𝑎1)𝑒

𝑗𝜔𝑡       (19) 

Similar to the concept of the frequency response function 

which was the ratio of the sinusoidal input and the sinusoidal 

output of a system in the frequency domain, the describing 

function of a nonlinear element is the complex ratio of the 

main component of the nonlinear element to the sinusoidal 

input.  This means equation (20): 

𝑁(𝐴,𝜔) =
𝑀𝑒𝑗(𝜔𝑡+𝜑)

𝐴𝑒𝑗𝜔𝑡
=
𝑀

𝐴
𝑒𝑗𝜑 =

1

𝐴
(𝑏1 + 𝑗𝑎1)     (20) 

3.2. Lure Model 

The proposed controller is designed based on the proven 

concepts in [21-22] and it will be assumed for transforming 

into a lure model that 𝑥𝑚(𝑡0) = 0. Since it is assumed for 

analyzing the describing function that 𝑟 = 0, therefore ∀𝑡 ≥
𝑡0  𝑥𝑚(𝑡) = 0 and ∀𝑡  𝑚𝑖(𝑡) = 0. Considering (14) and (16), 

the equation for the adaptive controller is as (21), and (22): 

휀0̇ = (𝛼00 + 𝜈0)휀0 + (𝑎1 + 𝜈1)휀1 + 𝑝𝑏휂 

�̇�𝑖 = −𝛾𝑖휀0휀𝑖         (21) 

where: 

𝛾𝑖 = {

𝑣𝑖𝑚𝑎𝑥
2 − 𝑣𝑖

2

𝑣𝑖𝑚𝑎𝑥
2 − 𝑣𝑖𝑚𝑎𝑥

′2 , 𝑖𝑓|𝑣𝑖| ≥ 𝑣𝑖𝑚𝑎𝑥
′ ⋀−휀0휀𝑖𝑣𝑖 > 0

𝛾′, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝛾′ = 𝛾𝑝𝑏
2 

𝑣𝑖,𝑚𝑎𝑥 = 𝑣𝑖,𝑚𝑎𝑥
′ + 𝜖𝑖 , 𝜖𝑖 > 0       (22) 

Furthermore, from (21) we have 𝑣0 = −𝛾1휀0
2. Thus 𝑣0 is 

negative for all times if 𝑣0(𝑡0) >  −𝑣0,𝑚𝑎𝑥. Hence, the 

parameter 𝑣0 will ultimately converge to 𝑣0,𝑚𝑎𝑥 so, it is 

assumed that 𝑣0(𝑡0) = −𝑣0,𝑚𝑎𝑥. The control input is 

calculated according to Fig. 2 as follows: 

𝑢 = 𝑝𝑏
−1𝜈𝑇휀 = 𝑝𝑏

−1(−𝜈0,𝑚𝑎𝑥휀0 + 𝑣1휀1)      (23) 

where 𝑣0,𝑚𝑎𝑥 is a constant. 

To separate the linear part from the nonlinear one, the 

plant and its unmodeled dynamic are considered as the linear 

block 𝐺0, the section for updating the adaptation rules as a 

nonlinear block in the feedback, and the saturation is 

considered as a nonlinear block in the forward path (Fig. 3). 

3.3. Analyzing the Describing Function (DF) 

Typically, to compute the DF of the nonlinear part, all of 

it is considered as a single entity. Since there are two distinct 

nonlinear parts in here, the DF of each part is calculated 

individually. In order to obtain the DF of the adaptive rules 

section, it is assumed that one of its inputs is sinusoidal in the 

form of 휀1 = 𝐴1sin (𝜔1𝑡) which is produced from the linear 

part according to Fig. 4. 휀0 is acquired by putting 휀1 in (13) 

where we will have equations (24) and (25). 

휀0(𝑡) =
𝐴1(𝜔1 𝑐𝑜𝑠(𝜔1𝑡)−�̃�𝑚

′  𝑠𝑖𝑛(𝜔1𝑡))

𝑎0
       (24) 

𝑢(𝑡) = 

(
4�̃�𝑚

′ 𝐴1
3𝜑 − 8𝑎0𝐴1𝑣1,𝑚𝑎𝑥𝜔1 − 3𝐴1

3𝛾′𝜔1
8𝑎0𝜔1𝑝𝑏

) sin(𝜔1𝑡) 

+(
4𝐴1

3𝜔1 − 8𝐴1�̃�𝑚
′ 𝑣0,𝑚𝑎𝑥𝜔1

8𝑎0𝜔1𝑝𝑏
) sin(𝜔1𝑡) 

−(
𝐴1
3𝛾′�̃�𝑚

′ − 8𝐴1𝑣0,𝑚𝑎𝑥𝜔1
2

8𝑎0𝜔1𝑝𝑏
) cos(𝜔1𝑡) 

𝜑 = tan−1(
𝜔1

−�̃�𝑚
′ )         (25) 

The obtained 𝑢(𝑡) is approximate. Hence, according to 

the definition of the DF in (20), with 휀1 = 𝐴1sin (𝜔1𝑡) and 

the output in (25), the describing function of the nonlinear 

part in the feedback is acquired. 

𝑁𝐴.𝐿(𝐴1, 𝜔1) = (
4�̃�𝑚

′ 𝐴1
2𝜑 − 8𝑎0𝑣1,𝑚𝑎𝑥𝜔1 − 3𝐴1

2𝛾′𝜔1
8𝑎0𝜔1𝑝𝑏

) 

+(
4𝐴1

2𝜔1 − 8𝐴1�̃�𝑚
′ 𝑣0,𝑚𝑎𝑥𝜔1

8𝑎0𝜔1𝑝𝑏
) 

−𝑗(
𝐴1
2𝛾′�̃�𝑚

′ −8𝑣0,𝑚𝑎𝑥𝜔1
2

8𝑎0𝜔1𝑝𝑏
)       (26) 

To obtain the describing function of the saturation  
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Fig. 2: The block diagram of a nonlinear element. Below: 

the display of its describing function [24]. 

 

 

 

Fig. 3: The closed loop system with transformed states. 

 

 
Fig. 4: The simplified block diagram of the closed loop 

system with the describing function. 

 

section, it is assumed that 𝑢(𝑡) = 𝐴2sin (𝜔2𝑡). This way if 

𝐴2 > 𝑢𝑚𝑎𝑥 then the describing function will be as equation     

(27): 

𝑁𝑠𝑎𝑡(𝐴2) =
2

𝜋
[arcsin (

𝑢𝑚𝑎𝑥

𝐴2
) +

𝑢𝑚𝑎𝑥

𝐴2
√1 − (

𝑢𝑚𝑎𝑥

𝐴2
2 ]     (27) 

and if 𝐴2 < 𝑢𝑚𝑎𝑥 then 𝑁𝑠𝑎𝑡(𝐴2) = 1. The performance of the 

DF is that it allows the stability analysis of a nonlinear system 

in the frequency domain to be evaluated in the same manner 

as linear systems. Consider the system in Fig. 4 where the 

describing function of nonlinear elements is placed instead of 

the elements themselves. If it is assumed that 휀1 = 𝐴sin (𝜔𝑡) 
then the frequency response of the close-loop will be:  

𝐺0(𝑗𝜔)𝑁𝐴.𝐿(𝐴, 𝜔)𝑁𝑠𝑎𝑡(𝐴) + 1 = 0 
⇒ 𝐺0(𝑗𝜔)𝑁𝐴.𝐿(𝐴, 𝜔)𝑁𝑠𝑎𝑡(𝐴) = −1      (28) 

Therefore, the describing function can be used to present 

the stability and robustness of the closed-loop nonlinear 

systems in a graphical form, such as the Nyquist diagram. In 

this way that the Nyquist diagram of the linear part of the 

system 𝐺(𝑗𝜔) can be plotted as usual and the describing 

function −1 (𝑁𝐴.𝐿(𝐴, 𝐽𝜔⁄ )𝑁𝑠𝑎𝑡(𝐴)) for different amplitudes 

on the same axes. In this way, the intersection point of the two 

diagrams shows the amplitude and the frequency of the limit 

cycle. Alternatively, the diagram of 𝐺(𝑗𝜔)𝑁𝐴.𝐿(𝐴, 𝜔)𝑁𝑠𝑎𝑡(𝐴) 

is drawn for different amplitudes similar to the Nyquist 

diagram. Then, the point ‘-1’ is the point where the oscillation 

can occur [30]. It can be assumed stability analysis that the 

sinusoidal input has some phase, that is 휀1(𝑡) = 𝐴sin (𝜔𝑡 +
𝐵). Accordingly, there are two equations and three variables 

for acquiring the limit cycle. Thus, the obtained solution will 

not be unique anymore. Therefore, it is assumed that the main 

harmonic does not have any phase. 

Finally, given the initial conditions, it is observed that the 

obtained estimation for the limit cycle is correct and its 

amplitude and frequency has a very slight difference with the 

value acquired from the analysis. In the next section, this 

method is applied to a second-order system. 

4. SIMULATION EXAMPLE 

In this section, the intended method for stability analysis 

is simulated for a practical plant. By introducing the system 

in (1), the describing function of the adaptive rules in (26), 

and saturation in (27), the amplitude and frequency of the 

limit cycle will be achieved using (28), and after the analysis 

with the Nyquist diagram, the system is given the initial 

conditions. The analysis will be repeated for different values 

of the controller parameter and the saturation amplitude. The 

system of generic transport aircraft (DC-8) airplane is 

considered as the main system in the proposed method [31]. 

(
�̇�
�̇�
) = (

𝑍𝛼
𝑉

  1 +
𝑍𝑞
𝑉

𝑀𝛼     𝑀𝑞

)

⏟          
𝐴𝑝

(
𝛼
𝑞
)

⏟
𝑥𝑝

+ (

𝑍𝛿
𝑉
𝑀𝛿

)

⏟  
𝐵𝑝

𝛬(𝜐(𝑡) + 𝑓(𝑥𝑝)) 

𝑓(𝑥𝑝) = 𝑓(𝛼, 𝑞) = 𝐾𝛼𝛼 + 𝐾𝑞𝑞 

where 𝛼(deg) is the aircraft angle of attack, 𝑞(deg/s) is the 

pitch rate, 𝑉(ft/s) is the air speed (considered constant), 

𝑀𝛿 , 𝑀𝑞 , 𝑀𝛼 , 𝑍𝛿 , 𝑍𝑞 , 𝑍𝛼 are the stability converters of the 

plane, 𝛬 > 0 is the loss of control effectiveness, and 𝑓(𝑥𝑝) is 

the uncertainty of the dynamics of the system. 

𝐴𝑝 = (
−0.8060  1.0
−9.1486  − 4.59

)   𝐵𝑝 = (
−0.04
−4.59

)    

𝛬 = 0.5 ,  𝐾𝛼 = 1.5𝑀𝛼  ,  𝐾𝑞 = 0.5𝑀𝑞     (29) 

highly damped second-order unmodeled dynamics [18-27], 

described by 

𝐺𝜂 =
𝜔𝑛

2

𝑠2 + 2휁𝜔𝑛𝑠 + 𝜔𝑛
2

  

𝑤𝑖𝑡ℎ 휁 = 0.9912 𝜔𝑛 = 15.1327     (30) 

The control signal 𝛿𝑒 (deg) is the elevator deflection in 

this system and control rules for determining the reference 

model are obtained using the LQR method with weight 

matrices of 𝑅𝐿𝑄𝑅 = 1 and 𝑄𝐿𝑄𝑅 = 𝑑𝑖𝑎𝑔(0.5,0.5). Other 

unknown parameters are selected as (31): 

𝛾′ = 1, 𝑢𝑚𝑎𝑥 = 30  𝐵𝑚 = (
1
0
) , 𝑄 = (

0.2 0
0  40

)    (31) 

It can be shown that: 

�̃�𝑚
′
= 1.4995,    𝑎0 = 31.22,  휃∗ = [−0.0178 0.2185]𝑇 

𝑣0,𝑚𝑎𝑥 and 𝑣1,𝑚𝑎𝑥 are selected to be 5 and 3.2 respectively. 

The value for the amplitude and the frequency of the limit 

cycle is obtained to be 𝐴∗ = 27 and 𝜔∗ = 6.28 using (28). 
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Moreover, if all parameters are adjusted then G0 and NA. L are 

showed according to (32). Since the frequency of the limit 

cycle is determined by the plant, three different values are 

observed for the amplitude by drawing the Nyquist diagram 

for 𝐺0(𝑗𝜔)𝑁𝑡𝑜𝑡𝑎𝑙(𝑗𝜔). As the amplitude is reduced, the 

diagram will circle around the point ‘-1’ and vice versa. As 

explained before, the amplitude whose Nyquist diagram 

crosses the ‘-1’ point is the amplitude of the limit cycle. Fig. 

5 depicts the Nyquist diagram of the system for three different 

values of amplitudes. 

𝐺0(𝑆) =
−4.58𝑆 − 546.6

𝑆4 + 30.4𝑆3 + 282.9𝑆2 + 1346𝑆 + 9567
 

𝑁𝐴.𝐿(𝐴
∗ + 𝑗𝜔∗) = −2.6432 − 1.7036𝑖     (32) 

Other amplitudes and frequencies may apply to (28) such 

as 𝐴 = 5.5 and 𝜔 = 16.5. But a limit cycle is stable if all of 

the paths around it will ultimately converge to it and these 

conditions are formulated as below: 

𝜕(ℑ(−𝑁(𝐴,𝜔)𝐺0(𝑗𝜔)))

𝜕𝜔
|𝐴∗,𝜔∗ > 0 

𝜕(ℜ(−𝑁(𝐴,𝜔)𝐺0(𝑗𝜔)))

𝜕𝐴
|𝐴∗,𝜔∗ > 0 

Eventually, considering the system in (1), and (29), the 

unmodeled dynamic in (2), (30), the saturation in (3), the 

reference model in (5), and the adaptation rules in (31), the 

stable initial condition is acquired by changing the initial 

conditions 휀1(0) and other initial conditions as follows: 

𝑥𝑚(0) = 0 , 𝑥𝜂(0) = 0  

𝑥𝑝(0) = 𝐶
−1휀(0) , 휀0(0) = 0.35휀1(0) 

Also, the controller parameters are as below: 

𝑣0𝑚𝑎𝑥 = 5, 𝜖0 = 0.1𝑣0𝑚𝑎𝑥, 𝑣1𝑚𝑎𝑥 = 3.2, 𝜖1 = 0.02𝑣1𝑚𝑎𝑥 

𝑣𝑖𝑚𝑎𝑥 = 𝑣𝑖𝑚𝑎𝑥+
′ 𝜖𝑖 

In Fig. 6, the transformed error is displayed for two 

different initial values. Regarding the obtained values for the 

amplitude and frequency from the analysis, it is observed that 

the describing function method could successfully predict the 

limit cycle and according to the practical features of the 

system, the initial conditions of the states were less than 30 

degrees. 

The saturated control signal for this limit cycle is almost 

similar to the saturated control signal which is obtained by 

applying a sinusoidal input with the amplitude and frequency 

of the limit cycle. These two signals will approximately 

coincide with each other in most times because the limit cycle 

reaches its stability and this shows the appropriate initial 

conditions and the correct estimation of the limit cycle (Fig. 

7). 

As seen in (27), and (28), it is obvious that the DF is 

dependent on 𝑣0,𝑚𝑎𝑥, 𝑣1,𝑚𝑎𝑥 and 𝑢𝑚𝑎𝑥. This means that by 

changing these values, the limit cycle of the system will 

change. By changing the amplitude from 30 to 15 and the 

controller parameters being constant 𝑣1,𝑚𝑎𝑥 = 3.2, and 

𝑣2,𝑚𝑎𝑥 = 5, the values 𝐴 = 45.5 and 𝜔 = 6.3 are obtained 

for the limit cycle from the frequency analysis. This limit 

cycle is shown in Fig. 8 for two different initial conditions. 

 
Fig. 5: The Nyquist diagram of 𝐺(𝑗𝜔)𝑁(𝐴,𝜔). 

 

 
(a) 

 
(b) 

Fig. 6: The display of the stable limit cycle for two different 

initial conditions and the values umax = 30, v1,max = 3.2, 

and v0,max = 5, (a) 휀1(0) = 38 and 𝑥𝑝(0) = [15.6   20.9]
𝑇, 

and (b) 휀1(0) = 10 and 𝑥𝑝(0) = [4.14   5.5]
𝑇. 

 

 
Fig. 7: The saturated control signal with 𝑢𝑚𝑎𝑥 = 30 and the 

initial conditions of 휀1(0) = 10 and the next with the input 

휀1(𝑡) = 𝐴
∗ 𝑠𝑖𝑛(𝜔∗𝑡). 

Now, if the values are set to 𝑣0,𝑚𝑎𝑥 = 0.2, and 𝑣1,𝑚𝑎𝑥 = 1.3 

and the saturation amplitude stays constant 𝑢𝑚𝑎𝑥 = 15, the  
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(a) 

 
(b) 

Fig. 8: The stable limit cycle for 𝑢𝑚𝑎𝑥 = 15, 𝑣0,𝑚𝑎𝑥 = 0.2 

and 𝑣1,𝑚𝑎𝑥 = 1.3, (a) The transformed error for initial 

conditions 휀1(0) = 18 and 𝑥𝑝(0) = [7.4   9.8]
𝑇, and (b) The 

transformed error for initial conditions 휀1(0) = 35 and 

𝑥𝑝(0) = [14.5   19.3]
𝑇. 

 

 
(a) 

 
(b) 

Fig. 9: The stable limit cycle for 𝑢𝑚𝑎𝑥 = 15, 𝑣0,𝑚𝑎𝑥 = 0.2, 

and 𝑣1,𝑚𝑎𝑥 = 1.3, (a) The transformed error for initial 

conditions 휀1(0) = 50 and 𝑥𝑝(0) = [20.7   27.46]
𝑇, and (b) 

The transformed error for initial conditions 휀1(0) = 12 and 

𝑥𝑝(0) = [4.96   6.6]
𝑇. 

amplitude and the frequency of the limit cycle are acquired as 

𝐴 = 39.5 and 𝜔 = 6.3 from the analysis. As seen in Fig. 9, 

the numerical simulation confirms the estimation obtained 

from the DF method. The limit cycle has a slight difference 

with the results of the analysis, the difference can be 

attributed to the describing function method because it is an 

approximate analytical method. The control signal and the 

saturated control signal for these updates and saturation 

parameters with the initial conditions 𝑥𝑝(0) = [4.96   6.6]
𝑇 

are shown in Fig. 10. 

5. CONCLUSION 

In this work, an accurate stability analysis method for the 

model reference adaptive controller for second-order systems  

 
Fig. 10: The control signal and the saturated control signal 

for initial conditions 휀1(0) = 12, 𝑢𝑚𝑎𝑥 = 15, 𝑣0,𝑚𝑎𝑥 = 0.2, 

and 𝑣1,𝑚𝑎𝑥 = 1.3. 

in the presence of saturation, unmodeled dynamics and the 

uncertainty of the system has been proposed. The recognition 

of the effects of nonlinear factors such as saturation in the 

stability analysis of systems is undeniable. Since the 

describing function is one of the accurate methods for 

nonlinear systems analysis and in the general system, there 

were two nonlinear parts including saturation and the 

nonlinear adaptive controller, the DF method was employed 

for the stability analysis of the system and to predict the stable 

limit cycles. Using this analytical method, the accurate 

estimation of the limit cycle was performed and the 

parameters of the applied algorithm were adjusted in the 

MRAC and conditions were established so that the system 

reached its stable limit cycle given the initial conditions of 

variables. One of the main features of the proposed method is 

the use of frequency analysis to predict the limit cycles of the 

system and the correct approximation of their amplitude and 

frequency. The simulation results demonstrate the integrity of 

the method for second-order systems by changing the 

saturation amplitude and the controller adjustment parameter. 
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