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Abstract: In fuel cell systems, voltage balancing is an important consideration. The utilization of a modular 

construction based on a three-level boost converter was able to balance DC voltage. This paper investigates 

the effect of parameter variations, such as inductors and capacitors, on the converter's steady-state 

controllable areas. The plot of the inductor current and the voltages of the output capacitors are illustrated 

for different scenarios. The system simulation results were performed using MATLAB / Simulink software. 
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1. INTRODUCTION 

Nowadays, the vital role of renewable energy in human 

life cannot be ignored. The fuel cell (FC) is a worthwhile 

energy-harvesting technology. It has attracted much attention 

in microgrid and electric hybrid vehicle applications [1, 2]. 

Much progress has been made in FCs, which has caused the 

formation of different types of FCs. Even though FCs have a 

great variety, they have the same operating principles and a 

high power density.  

The polymer fuel cell (PEMFC) is popular among fuel 

cells [3]. Thanks to the solid electrolyte, PEMFC is shown 

high resistance to gas. PEMFC takes advantage of the 

reaction of hydrogen and oxygen to generate DC electric 

power. PEMFC can be set up quickly by taking advantage of 

low operating temperatures. These advantages cause this kind 

of FC in applications like vehicles and emergency systems 

which need high speed to be practical [3]. The advantage and 

disadvantages of PEMFC are enumerated in Table 1 [4-5]. 

Expanding the life of this type of FC is the major challenge 

of this technology. Although the oxygen and hydrogen inputs 

are connected to the FC stack in parallel, the electrical outlets 

are linked in series. The series connection is to boost the 

output voltage. Because of the series connection of cells, the 

whole system's lifespan depends on each cell's lifespan [6]. 

The phenomenon of the snowball effect is one of the 

significant challenges facing the FC. Fig. 1 shows the 

snowball effect in an FC. Chain reactions in this effect can 

lead to the destruction of the FC. One of the effective 

parameters in cell destruction is membrane drying. 

Proper energy management can increase the life of any 

cell. One solution to prevent this is to regulate water as a 

product produced in the cell by regulating the FC current. A 

DC-DC converter can regulate current [7]. A particular unit 

assures water management in the fuel cell, but flow 

management is done with the assistance of a DC-DC 

converter.  

DC-DC power converters are among the most important  
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Table 1: Advantages and disadvantages of PEMFC [4-5]. 

Advantages 

 

Disadvantages 

 

 
Fig. 1: Snowball effect in fuel cell. 

and thought-provoking issues in hybrid systems [8]. These 

converters have various applications in different industries. 

The applications of these converters are listed in Fig. 2 [9-

17]. 

A group of FC cells is connected in series to make an FC 

stack. Connecting each stack to its converter and the layout 

of output converters in series to DC-DC converters can 

effectively boost voltage [7, 18]. This structure is illustrated 

in Fig. 3. The possibility of controlling the output current of 

each cell individually in this method gives the freedom to 

manage and control the FC. This method can be used to solve 

the snowball effect. 

Each FC stack operates independently according to its 

specific conditions. Therefore there is another new challenge. 

This problem occurs due to the voltage imbalance in output 

capacitors C1 to C4 (Fig. 3) caused by unequal stack power 

production. Risen stress on switches and power components 

and cell life reduction can be caused by voltage imbalance. 

According to [18], a modular structure is suggested to 

solve the voltage imbalance problem in the photovoltaic 

system. This structure solves the problem of voltage 

imbalance by sharing a capacitor between two converters. 

Fig. 4 shows the considered structure consisting of two 

modules. Three capacitors are used in this circuit. The 

voltages of C1 and C2 and as well as C2 and C3, are equal. As 

a result, capacitor voltages C1 and C3 are equal. The 

equalization of the output voltages means that the voltage is 

balanced. 

 
Fig. 2: DC-DC power converter applications [7-15]. 
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Fig. 3: Utilizing separate converters in the fuel cell. 
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Fig. 4: Studied system: DC modular system. 

Fig. 5 depicts some of the advantages of the researched 

structure in terms of modularity and the use of a three-level 

boost. The proposed system's shortcomings include a large 
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Fig. 5: Advantages and disadvantages of the studied 

structure. 

number of switches, which raises the cost. However, despite 

these disadvantages, the use of this structure is justified. 

The commandable areas of the considered converter in 

[7] are investigated. If the calculated duty cycles are between 

0 and 1, the system is in the commandable areas. 

The inductor and capacitor values can be planned by 

restricting the current ripple. Besides, they can be designed 

by choosing the high-frequency voltage ripple at a specific 

switching frequency. The inductor, capacitor, and frequency 

are determined using an optimization procedure that 

considers volume, cost, and efficiency limitations [19-20]. 

Because the parameters of each system will undergo 

possible changes in its operating point, in this paper, the 

change of capacitor and inductor values on the voltage 

balance of the system is investigated. In research [18], the 

capacitor and inductor values for both modules are considered 

equally. Moreover, in [18], the robustness of this modular 

converter and its sliding mode controller is investigated by 

changing the value of the capacitor and inductor change from 

50% to 150%. Although, the effect of this change in these 

elements on the waveforms of inductor current or capacitor 

voltage and especially voltage balance is not considered. In 

this study, additional work was performed to further 

investigate and ensure that the performance of the system that 

we introduced in [18] does not affect by changes in 

capacitance and inductance, especially tracking reference 

currents and voltage balance. 

According to Fig. 6, fuel cell systems deal with a 

snowball effect challenge that can damage fuel cells. To 

relieve this problem, separate converters might be utilized. 

Furthermore, boost converters are widely utilized in fuel cell 

systems since the output voltage is low. These converters can 

be coupled in series to enhance the produced voltage further. 

A voltage imbalance occurs in the system when a separate 

converter is used. Each FC may operate under different 

conditions and, therefore, has a different voltage at its output 

terminal. 

The current and voltage waveform of inductors and 

capacitors are displayed in this paper to explore the influence 

of inductors and capacitor changes. 

The paper structure is as follows: After reviewing the 

research literature in the introduction, the second part 

introduces the studied system. The governing equations of  
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Fig. 6: Application of the studied structure in FC systems. 

that system are recalled. In the third section, the results of the 

system simulation are shown. At the end is the conclusion. 

2. STUDIED SYSTEM 

In this paper, the three-level modular converter is 

considered. Fig. 4 shows the studied system, which contains 

two modules. 

An input voltage source, an inductor, and its switches are 

important elements that build a module. 

Four switches exist in each module; two are main 

switches, and the others are complementary switches. The 

two main switches take advantage of the interleaving 

technique for making the command signals. In modulation, 

the signal phase of the first control signal shifts half the period 

to the second control signal. 

The system incorporates five state equations shown in 

Table 2. The state variables are input inductors' currents and 

the other is capacitors' voltages. 

3. SIMULATION OF THE SYSTEM AND ITS RESULTS 

System simulation has been done with the use of 

MATLAB/Simulink software. A large-signal average model 

for the two-module system is used for simulation [18]. The 

simulation parameters are given in Table 3. 
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Table 2: System state equation. 

Inductor 

𝑳𝟏

𝒅𝒊𝟏
𝒅𝒕

= −𝒓𝟏𝒊𝟏 + 𝑽𝒊𝟏 − (𝟏 − 𝒅𝟏𝟏)𝒗𝑪𝟏 − (𝟏 − 𝒅𝟏𝟐)𝒗𝑪𝟐 

 

𝑳𝟐

𝒅𝒊𝟐
𝒅𝒕

= −𝒓𝟐𝒊𝟐 + 𝑽𝒊𝟐 − (𝟏 − 𝒅𝟐𝟏)𝒗𝑪𝟐 − (𝟏 − 𝒅𝟐𝟐)𝒗𝑪𝟑 

Capacitor 

𝑪𝟏

𝒅𝒗𝒄𝟏

𝒅𝒕
= (𝟏 − 𝒅𝟏𝟏)𝒊𝟏 − 𝒊𝒄𝒉 

𝑪𝟑

𝒅𝒗𝑪𝟑

𝒅𝒕
= (𝟏 − 𝒅𝟐𝟐)𝒊𝟐 − 𝒊𝒄𝒉 

𝑪𝟐

𝒅𝒗𝑪𝟐

𝒅𝒕
= (𝟏 − 𝒅𝟏𝟐)𝒊𝟏 + (𝟏 − 𝒅𝟐𝟏)𝒊𝟐 − 𝒊𝒄𝒉 

 

Table 3: System parameters. 

Parameter  Value 

𝑉𝑖1, 𝑉𝑖2  12 V 

𝐿1, 𝐿2  0.9 mH 

𝑟1, 𝑟2  0.06, 0.01Ω 

𝐶1, 𝐶2, 𝐶3  100 µF 

𝑓𝑠  10 kHz 

𝑅𝑐ℎ  8.52 Ω 

 

Several scenarios are performed to change the values of 

inductors and capacitors. Table 4 is considered several cases. 

The simulation results for each case are presented in Figs. 10-

14. In each figure, two operating points are considered for 

input power reference values (Pref). For all figures, the power 

reference Pref = 120 W for the upper figure (a) and Pref = 500 

W for the lower figure (b). As shown in Table 4, there is a 

normal case in which the parameters are at their nominal 

values. Only the capacitor or inductor is changed in other 

cases (Case 1, Case 2, and Case 3). 

3.1. Normal Case 

In this scenario, the current waveforms of the inductor 

and the voltage of the capacitor in a steady state are conducted 

without changing the parameter. 

Fig. 7 shows the waveforms of the currents iL1 and iL2 and 

the corresponding reference currents, iref1 and iref2. It can be 

observed that in both operating points (120 W and 500 W), 

inductor currents are tracking their reference current. 

Moreover, in those operating points, voltage balance is 

achieved, as Vc1, Vc2 and Vc3 are equal.  

The voltage waveforms of capacitors C1, C2, and C3 as a 

function of time are seen in Fig. 8. 

3.2. First Case (Case1) 

In this case, the common capacitor is changed. Figs. 9 

and 10 display the voltage waveform of capacitors C1,  

 

 

 

 

Table 4: Different scenarios. 

Scenario Changes Value 
Figure 

Number 

Normal Without change 
C1=100 µF 

C3=100 µF 

C2=100 µF 

Fig. 7 

Fig. 8 

Case 1 
Change 

C2 

Increase 

C1=100 µF 

C3=100 µF 

C2=200 µF 

Fig. 9 

Decrease 

C1=100 µF 

C3=100 µF 

C2 =50 µF 

Fig. 10 

Case 2 
Change 

C1 

Increase 

C3=100 µF 

C2=100 µF 

C1 =200 µF 

Fig. 11 

Decrease 
C3=100 µF 

C2=100 µF 

C1 =50 µF 

Fig. 12 

Case 3 
Change 

L2 

Increase 
L1=0.9 mH 

L2=2L1 
Fig. 13 

Decrease 
L1=0.9 mH 

L2=0.5 L1 
Fig. 14 

 

C2, and C3 as a function of time. In these two figures, the value 

of the common capacitor C2 changes. In Fig. 9, by increasing 

the value of C2, the ripple of its voltage decreases. In Fig. 10, 

voltage waveform increases rather than other capacitors. 

Nonetheless, the voltage balance is still achieved in 

increasing and decreasing values of capacitor and in both 

operating points (120 W and 500 W).  

3.3. Second Case (Case 2) 

In this case, the non-common capacitor is changed. Figs. 

11 and 12 present the voltage waveform of capacitors C1, C2, 

and C3 as a function of time. In these two figures, the value 

of capacitor C1 changes. These figures represent that similar 

to Case 1, by changing the value of this capacitor, voltage 

balance is achieved, and changing this capacitor only changes 

the ripple of its voltage waveform.  

3.4. Third Case (Case 3) 

In this case, one of the inductors is changed. Figs. 13 and 

14 illustrate the waveforms of the currents iL1 and iL2 and the 

corresponding reference currents, iref1 and iref2. In these two 

figures, the value of inductor L2 changes. In Fig. 13, the ripple 

of the current waveform is decreased due to the increase in 

the value of L2. In Fig. 14, L2 is decreased, and its current 

waveform has larger ripples than L1 current waveform. In 

both of them, tracking reference currents are done properly. 

According to all the waveforms obtained from the 

simulation, it can be seen that changes in the value of the 

inductor or capacitor only change the current or voltage 

ripple. Changes in the parameters do not affect the voltage 

balance of the capacitors. 
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Fig. 7: Simulation waveforms: Inductor currents for L1 and 

L2 and related reference currents (normal state). Input 

power: (a) 120 W, (b) 500 W. 
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Fig. 8: Simulation waveforms: Voltage of capacitors C1, C2, 

C3 (normal mode). Input power: (a) 120 W, (b) 500 W. 
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Fig. 9: Simulation waveforms: Voltage of capacitors C1, C2, 

C3 first state (C2 = 200 µF). Input power: (a) 120 W, (b) 500 

W. 
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Fig. 10: Simulation waveforms: Voltage of capacitors C1, 

C2, C3 first state (C2 = 50 µF). Input power: (a) 120 W, (b) 

500 W. 
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Fig. 11: Simulation waveforms: Voltage of capacitors C1, 

C2, C3 second state (C1 = 200 µF). Input power: (a) 120 W, 

(b) 500 W. 
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Fig. 12: Simulation waveforms: Voltage of capacitors C1, 

C2, C3 second state (C1 = 200 µF). Input power: (a) 120 W, 

(b) 500 W. 
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Fig. 13: Simulation waveforms: currents of L1 and L2 

inductors and related reference currents (third case) (L2 = 

2L1). Input power: (a) 120 W, (b) 500 W. 
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Fig. 14: Simulation waveforms: currents of L1 and L2 

inductor and related reference currents (third case) (L2 = 

0.5L1). Input power: (a) 120 W, (b) 500 W. 
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4. CONCLUSION 

In this paper, a DC modular converter is considered to 

balance the output voltage. This converter can be used in fuel 

cell applications. In several scenarios, the values of the 

inductors and the capacitors of the modules changed. Using 

MATLAB/Simulink software, the waveforms of the system 

are plotted. The simulation results are performed on the 

variation in capacitor and inductance to investigate their 

modification effects. It was observed that changing the values 

of capacitors and inductors had no effect on the capacitance-

voltage balance in the steady-state regime. As a result, the 

inductance (L) and capacitor (C) values do not affect the 

controlled zones. 
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