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Abstract: The predictive performance of a neural network depends on the one hand on the difficulty of a problem, defined 

by the number of classes and complexity of the visual domain, and on the other hand on the capacity of the model, 

determined by the number of parameters and its structure. By applying layer saturation and logistic regression probes, 

we confirm that these factors influence the inference process in an antagonistic manner. This analysis allows the detection 

of over- and under-parameterization of convolutional neural networks. We show that the observed effects are 

independent of previously reported pathological patterns, like the “tail pattern”. In addition, we study the emergence of 

saturation patterns during training, showing that saturation patterns emerge early in the optimization process. This 

allows for quick detection of problems and potentially decreased cycle time during experiments. We also demonstrate 

that the emergence of tail patterns is independent of the capacity of the networks. Finally, we show that information 

processing within a tail of unproductive layers is different, depending on the topology of the neural network architecture. 
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1. INTRODUCTION 

The problem of the opaqueness of neural networks is one of 

the key challenges in deep learning. This has led to a 

primarily trial-and-error driven mode of development, based 

on the comparison of abstract metrics that capture model-

agnostic concepts like predictive performance, demand in 

computational resources, and capacity [1-7]. To move 

towards a more efficient, principle-based design process, a 

more profound understanding of the model’s state is required. 

This understanding does not have to be necessarily complete 

in regard to fully understanding the relation of the input and 

output of the model. Comparative analysis methods based on 

singular vector canonical correlation analysis (SVCCA) [8] 

are good examples of such non-holistic approaches. The 

information extracted from the model using SVCCA is highly 

aggregated, condensing each layer pair to a single value, but 

allows for useful insights into the converged model and the 

training process, by comparing different layers within that 

model, as well as the states of one layer at different training 

epochs. Another example close to our approach is the intrinsic 

dimensionality used for PCA-based pruning by [9, 10]. This 

method studies the inference process with spectral methods to 

determine unproductive layers and unnecessary filters. This 

method, originally only operable for simple sequential 

architectures, was later expanded on in [11] to ResNet-style 

architectures. Logistic regression probes [12] and saturation 

[13] aggregate a single layer to a number, which allows for 

easy and intuitive analysis, similar to measuring with a 

thermometer. While logistic regression probes measure the 

intermediate solution quality very directly by training logistic 

regressions on the output of a layer, saturation is more task 

agnostic. Richter et al. [13, 14] have shown that for visual 

classification tasks, the dimensionality of the subspace of 

features responsible for data processing varies significantly 

depending on the input resolution, leading to model and 

training inefficiencies. While saturation is easy to define, the 

exact properties of this metric are yet to be discovered. In this 

paper, we will consider the following questions to gain a 

better understanding of hidden layer saturation: 

 How do model capacity and problem difficulty 

influence the saturation value? 
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 Is the organization of the inference process 

influenced by the capacity of individual layers or the 

capacity of the entire network? 

 How do saturation patterns evolve in the training 

phase?  

We address these questions in a series of experiments. This 

paper is an extended version of the conference contribution 

[15], introducing new results and adding some details. It is 

structured as follows: After introducing the concepts relevant 

for our work (Section 2), we demonstrate the idea of principal 

eigenfeatures using an autoencoder (Section 3). We then 

present further experiments conducted to address the 

questions raised above (Sections 4, 5, and 6). The paper 

concludes with a summary of the results (Section 7). 

2. CONCEPTS AND RELATED WORK 

2.1. Logistic Regression Probes 

Logistic regression probes, in this work abbreviated as 

probes, are a tool proposed by Alain and Bengio [12] used as 

a "thermometer-style"-scalar metric for analyzing the 

intermediate solution quality during the forward pass. They 

are obtained by training a simple logistic regression model on 

the same task as the original neural network, however, using 

the layer’s output values as input data for training. Hence, the 

probe performance can be considered as a measure of the 

linear separability of the target classes in the layer’s output 

representations. As the neural network’s softmax layer and 

the logistic regression probe both minimize cross-entropy, 

both solve effectively the same task. Therefore, we can use 

the test accuracy of the logistic regression relative to the 

model’s predictive performance to judge the intermediate 

solution quality. The logistic regression probe performance 

should increase monotonically from early to later layers of the 

network, approaching the predictive performance of the 

model towards the final layers. Such a development implies 

that all layers contribute qualitatively to the inference 

process. Logistic regression probe performance is visualized 

as a curve with individual measuring points (network layers) 

arranged in the same order as the data flows through the 

network during a forward pass. An example of this can be 

seen in Fig. 1, which displays the probe performances 

measured on the convolutional layers of VGG19 trained at a 

low resolution on the ImageNette dataset. From the example 

we can observe how the intermediate solution quality 

measured by the probes improve from layer to layer until 

reaching the same level of accuracy as the model. 

2.2. Saturation 

The saturation sl of a layer l is a simple scalar metric that 

was first introduced by Shenk et al. [16] and Richter et al. 

[13]. It can be computed for any layer in a neural network 

based on the layer’s output values. It measures how many of 

the available dimensions in the output space Zl of the layer l 

are relevant for the inference process: 

𝑠𝑙 =  
dim 𝐸𝑙

𝐾

dim 𝑍𝑙
 )1( 

Saturation is computed by approximating the ratio of the 

dimensionality of the relevant eigenspace dim El
k of layer l 

and the extrinsic dimensionality of that layer’s activation 

 

 

Fig. 1: An example of a tail pattern on a trained 

ResNet18 model. The tail is starting on the layer with the 

black border. Tail patterns can be identified by low 

saturation and stagnation of the logistic regression probe 

performance. Layers of the tail are no longer improving 

on the intermediate solution quality. For this reason, these 

layers can be considered a parameter-inefficiency. The 

model is trained on ImageNette at 32×32 pixel input 

resolution. 

 

values dim Zl. The relevant eigenspace El
k is a subspace of Zl 

in which the information is processed. This space is referred 

to as "relevant" because a projection of the data into the 

relevant eigenspace will not lead to a loss of predictive 

performance [13]. The relevant eigenspace can be considered 

the subspace in which the information processing is 

happening. The approximation of El
k is done using principal 

component analysis (PCA) [17], where the largest 

eigendirections are kept in order to explain 99% of the data’s 

variance in the output of layer l. This technique allows 

computing saturation on-line during training. In contrast, 

evaluating logistic regression probes may take significant 

extra time, as it requires the additional training of the probes 

from a complete set of activation values, which can easily 

take more time than training the network. In this work, we use 

our implementation prepared in the context of the Delve-

Framework [18]. 

2.3. The Semantics of Saturation 

A sequence of low saturated layers (< 50% of the average 

saturation of all other layers) is referred to as a “tail pattern” 

and indicates that these layers are not contributing 

qualitatively to the prediction. The example in Fig. 1 displays 

the saturation values of VGG19 trained on ImageNette 

alongside the logistic regression probe performances 

extracted from the same layers. We observe that layers 

improving the logistic regression probe performances are 

significantly higher saturated than layers that do not improve 

the probe accuracy relative to the previous layer. 

This suggests that solving a problem saturates the layer 

more than simply passing through information. However, this 

does not mean that the absolute saturation value is indicative 

of the activity within a layer. So far, saturation has been only 

explored as a quicker on-line computable alternative for 

logistic regression probes. As such, saturation has always 

been viewed relative to other layers within a neural network. 
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In this work, we will explore how the absolute saturation 

value changes in different scenarios. We further explore how 

saturation evolves during training, and we will explain the 

low intrinsic dimensionality observed in the tail pattern and 

we will explain the low intrinsic dimensionality observed in 

the tail pattern. 

3. EXPERIMENT I: PRINCIPAL EIGENFEATURES 

The results and experimental work of this paper heavily 

rely on the analysis of the eigenspace of neural network 

layers. Since neural networks are feature extractors, we refer 

to a principal eigendirection inside the feature space of a 

neural network layer as principal eigenfeature. We first 

demonstrate the effectiveness of principal eigenfeatures and 

their relation to the orthogonal feature space using an 

autoencoder.  

3.1. Methods 

We choose a convolutional autoencoder since the output 

is easy to visualize and differences in predictive performance 

are intuitive to understand with the human eye. The exact 

architecture of the autoencoder is depicted in Table 1. We 

train the autoencoder for 30 epochs using the Adam optimizer 

[19] and a batch size of 128 images on the Food101 dataset 

[20]; the hyperparameters can be seen in Table 2. We also use 

random cropping, horizontal flipping, and random rotations 

for data augmentation purposes, to increase the difficulty of 

the reconstruction. 

3.2. Results 

In Fig. 2 we visualize a randomly chosen example from 

the test set. During training time, we evaluate the autoencoder 

as normal. However, during inference time, we only keep the 

k largest eigenfeatures that are needed to explain a percentage  

𝛿 of the data’s variance in that layer by using a linear 

retraction generated from the reduced k-dimensional 

eigenspace El
k using the following formula: PEl

k=(El
k)TEl

k. By 

choosing various values for 𝛿, we can observe the ablation 

caused by the removal of eigenfeatures. As we can see in Fig. 

2, the images are recognizable until 99% explained variance. 

However, it is worth noting that even at 99.99% variance, 

4374 of 8192 eigenfeatures were used in the bottleneck of the 

autoencoder. This is apparent by the dimensionality of the 

reduced eigenfeature space EK
enc of the encoding layer. At 

99% variance, the principal eigenfeatures of the bottleneck 

layer are only 597-dimensional, demonstrating that over- 

parameterization results in underutilization of the feature 

space, even in the bottleneck of an autoencoder. 

4. EXPERIMNENT II: CAPACITY AND PROBLEM 

DIFFICULTY BEHAVE PROPORTIONALITY 

In this section, we analyse the relationship between 

problem difficulty and model capacity in two experiments, 

exploring how this relationship is reflected in the saturation 

values. In our experiments, we train the entire VGG-network 

family (VGG11, 13, 16 and, 19) on Cifar10 [21] and reduce 

their capacity evenly over the entire architecture to observe 

how these reductions affect the saturation values. Our first 

hypothesis states that the average saturation sµ increases 

proportionally with a reduction in capacity while the model 

performance decreases. We then move on to investigate how 

 

Table 1: Convolutional Autoencoder. 

Encoder Decoder 

512 × 512 × 3 Input (3 × 3) conv, 8 ReLU 

(3 × 3) conv, 16 filters, 

ReLU 

upsampling, nearest, scale-

factor 2 

(2 × 2) max pooling, 

strides 2 

(3 × 3) conv, 8 filters, ReLU 

(3 × 3) conv, 8 filters, 

ReLU 

upsampling, nearest, scale-

factor 2 

(2 × 2) max pooling, 

strides 2 

(3 × 3) conv, 16 filters, 

ReLU 

(3 × 3) conv, 8 filters, 

ReLU 

upsampling, nearest, scale-

factor 2 

(2 × 2) max pooling, 

strides 2 

(3 × 3) conv, 3 filters, ReLU 

 

Table 2: Hyperparameters for the convolutional 

autoencoder. 

 
 

the problem difficulty changes the saturation emerging in a 

neural architecture. Since the relevant eigenspace is generally 

larger when the layer is contributing to the quality of the 

solution [13], we further hypothesize that more processing in 

a layer requires a larger relevant eigenspace. If this 

assumption holds true, the overall saturation level should 

increase with an increase in the difficulty of the task. If both 

working hypotheses are true, we can conclude that the 

difficulty of the problem and the capacity of the layers 

influence saturation in an antagonistic way. 

4.1. Methodology 

We test our working hypotheses by conducting two 

experiments. We first train the VGG-family of networks on 

Cifar10. We further train 4 additional variants of each model, 

which have the respective number of filters (and thus 

capacity) reduced by a factor of 12, 14, 18 and 116. We 

choose Cifar10 for its manageable size, which allows for a 

larger number of model training runs to be conducted with 

our available resources, which is necessary for this 

experiment. We choose the VGG-family of networks for its 

architectural simplicity and because we can test different 

depths of convolutional neural networks by experimenting on 

the entire family of networks. The training itself is conducted 

using a stochastic gradient descent (SGD) optimizer with a 

learning rate of 0.1, which is decaying after 10 epochs with a 

decay factor of 0.1. The models are trained on a batch size of 

64 for 30 epochs in total. 

The second experiment is conducted on ResNet18. 

However, we are using a standardized input resolution of 

Parameter Parameter 

Input Resolution 224 × 224 

Epoch   50 

Batch size 128 

Optimizer Adam 

Adam: beta1   0.9 

Adam: beta2 0.999 

Adam: epsilon   1e-8 

Adam: learning rate 0.0001 
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224×224 pixels, to avoid artifacts caused by the input 

resolution. We train the model on multiple datasets of 

different difficulties (in ascending order of complexity): 

MNIST, Cifar10, TinyImageNet, and the ImageNet dataset 

[21-24]. While it is hard to precisely define the complexity of 

the task, we think that the selected datasets can be regarded 

as increasingly difficult based on the number of classes and 

the complexity of the visual information provided as data 

points to the model. The resolution of MNIST binary images 

is 28×28 pixel. That is suitable for the 10-class classification 

problem. Cifar10 comprises RGB images with a 32×32 

resolution. That is suitable for the 10-class classification 

problem as well. TinyImageNet consists of RGB images of 

size 64×64 with 200 classes, and ImageNet is made up of 

RGB images of various sizes belonging to 1,000 classes. 

4.2. Results 

When the capacity of the model is reduced, the average 

saturation sµ increases, and the predictive performance 

decreases. The exponential reduction in capacity is reflected 

in a logarithmic relation between the increasing sµ and 

predictive accuracy measured on the test set (see Fig. 3). 

From these observations, we can conclude that reducing the 

capacity of the architecture results in an increase in 

saturation. We further observe in Fig. 3 that saturation also 

increases with problem complexity. The saturation levels of 

all layers increase when the model is trained on a more 

difficult problem. The overall shape of the saturation curve 

only deviates slightly, with no tail pattern or similar 

anomalous shapes emerging. Since we know from the works 

of [13] that a resolution of 224×224 pixels results in an even  

 

     

(a) (b) (c) (d) (e) 

 

  

 

 (f) (g)  

Fig. 2: Reconstructions of a single sample image, with the network being restricted to a percentage of its eigenfeatures: (a) 

Original: dimEncoding = 8192,(b) δ = 99.99%: dimEK
enc=4374, (c) δ = 99.9%: dimEK

enc=1626, (d) δ = 99.5%: dimEK
enc=1332, 

(e) δ = 99.0%: dimEK
enc=59, (f) δ = 95.0%: dimEK

enc=17, and (g) δ = 90.0%: dimEK
enc=1. Note how the visualized 

reconstructions degenerate with decreased explained variance,  

  

(a) (b) 

Fig. 3: Relationship of network saturation to model capacity and data complexity, (a) Accuracy and saturation with 

varying model capacity, and (b) ResNet18 saturation curves for different datasets. Reducing the number of filters and thus 

reducing the model capacity leads to an increase in the average saturation and a decrease in performance. Training a model on 

more difficult datasets also increases the overall saturation level. This indicates that saturation can measure the load on a 

ResNet18 model. 
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distribution of the inference process for the trained model, we 

can conclude that less processing is required for less complex 

problems. Combined with the insights gained from training 

the VGG-variants on Cifar10, we can conclude that for the 

pairs of dataset and model in our experiments, a saturation 

“sweet spot” exists between sµ = 0.2 and sµ=0.4, which yields 

good predictive performance without being too excessively 

over-parameterized. This sweet spot allows us to empirically 

formulate the algorithm for optimizing the network width 

proposed in our previous work [13]. This algorithm is 

depicted in Fig. 4. Since the experiment suggests a roughly 

linear relationship between the saturation values and the 

width scaling, the scaling parameter can be approximated 

from the average saturation. 

5. EXPERIMENT III: ON THE EMERGENCE OF 

SATURATION PATTERNS 

The tail pattern that we discussed earlier in this work 

allows for the identification of inefficiencies caused by 

mismatches between the neural architecture and the input 

resolution. However, since saturation can be computed life 

during training with little overhead [13], we think that it might 

be interesting to see how these patterns emerge during the 

training process. 

5.1. Methodology 

We first examine how the saturation levels evolve in a 

layer under different conditions. We train a set of multilayer 

perceptrons (MLP) with 3 fully connected layers. The first 

layer has 256 units, and the size of the second layer varies for 

each network, being in the range of 8, 16, 32, 64, 128, 256, 

512, and 1024 units. We train these networks using the Adam 

optimizer and a batch size of 128 on Cifar10 using the native 

resolution of the dataset. The training is conducted twice. 

Once using 8 epochs, which is enough for all models to 

converge, whereas the second experiment is run for 30 

epochs, which results in the loss increasing again due to 

overfitting. The hidden layer saturation is calculated after 

each epoch for observing the evolution of the architecture. 

We also calculate the cross-entropy loss of the model to 

observe a possible relationship between loss and saturation 

convergence. Based on these observations, we repeat the 

experiment on VGG11 and VGG19 as well as on sparse (low 

capacity) versions of these models with 1/8 of the original 

number of filters. We do this to understand if saturation 

patterns depend on the depth, architecture, and capacity of the 

network. 

5.2. Results 

In Fig. 5, we observe that an increase in the number of 

units in the fully connected layer will result in a decreased 

saturation. However, the saturation does not change 

substantially during training, indicating that the inference 

process is not changed or shifted substantially inside the 

layer. 

In Fig. 6, we can see that the increase in validation loss 

does not affect saturation. The fact that overfitting is not 

reflected in saturation values indicates that the changes to the 

way the data is processed when the model starts to overfit are 

subtle and thus are not reflected in changes to the relevant  

 

 

Fig. 4: This flow-chart depicts the basic procedure of 

optimizing the width of a neural architecture based on the 

average saturation of the model. The width of the network is 

increased to decrease saturation and vice versa until the 

model has an average saturation in the “sweet-spot”-range of 

20-40%. 

 

eigenspace and therefore saturation. This also means that 

saturation patterns in fully connected networks are 

independent of the training progress, which could allow for 

early detection of over- and under-parameterization during 

training. However, it also means that overfitting and 

convergence of the model need to be taken into consideration 

when analyzing saturation on fully connected neural 

networks, as these are not reflected by the saturation patterns. 

In Fig. 7, we can see that saturation behaves substantially 

differently in convolutional neural networks, which exhibit a 

converging behavior towards a final pattern. This converging 

behavior is independent of the position of the layer in the 

network, the number of layers, and the capacity of the 

network, as Fig. 7 illustrates. Another interesting observation 

is that the tail pattern seems to be observable rather early 

during training, which indicates that an online analysis during 

training allows the data scientist to detect inefficiencies early, 

before the training has concluded. 

6. EXPERIMENTS IV: PREDICTABILITY OF TAIL 

PATTERNS REGARDING COMPLEXITY 

In the following, we examine how overall saturation 

affects the predictability of tail patterns. Richter et al. [14] 

show that the tail patterns in sequential convolutional neural 

networks can be predicted by computing the receptive field 

of all convolutional layers. The receptive field can be 

considered the field of view of a convolutional layer. 

Everything contained in the area spanned by the receptive 

field can hypothetically influence the value on a single 

position on the output feature map. In Section 5, we showed 

that changing the number of filters in a convolutional layer 

results in the changing of the global saturation level.  
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(a) (b) 

Fig. 5: (a) Saturation of layer 2 during training, and (b) Validation loss during training. Saturation of a 3-layer MLP does not 

change substantially during training while the loss is converging. 

  

(a) (b) 

Fig. 6: (a) Saturation of layer 2 while overfitting, and (b) Saturation of layer 2 while overfitting. Saturation patterns of a 3-

layer MLP are unaffected by overfitting, which indicates that overfitting is a process not affecting the overall dimensionality of 

the data inside the feature space. 

 

  

(a) (b) 

  

(c) (d) 

 
Fig. 7: Saturations of convolutional neural networks, (a) VGG 11, (b) VGG 19 (Sparse), (c) VGG 13, and (d) VGG 

19. There is a converging behaviour regarding saturation in contrast to previous observations in Fig. 5.
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However, if the receptive field expansion is determining the 

number of unproductive layers, we will observe a tail pattern 

of unproductive layers starting at the ‘border layer’ [14].  

6.1. Methodology 

We test the hypothesis by repeating the experiments 

conducted by [14] regarding the prediction of unproductive 

layers. The authors of [14] were able to predict unproductive 

layers by computing the border layer for VGG11, 13, 16, and 

19 on Cifar10. We reduce the capacity of these models by 

reducing the filter size to 1/8 of the original size to see 

whether a drastic loss in capacity changes how the inference 

is distributed. The models are trained for 30 epochs using the 

SGD-optimizer with a learning rate of 0.1, decaying by a 

factor of 0.1 every 10 epochs. The batch size is 64, each batch 

is channel-wise normalized, each image is randomly cropped 

during inference time as well as randomly horizontally 

flipped with a probability of 50%. The receptive field and the 

border layer are computed using the formulas provided by 

[14]. 

6.2. Results 

Even though the capacity of the networks has been 

significantly reduced in every layer, the networks do not 

spread the inference process among significantly more layers 

(see Fig. 8). Based on these results, we conclude that the 

inference dynamics of the tested networks did not change 

substantially by reducing their capacity. This means that the 

capacity of layers primarily interacts with the difficulty of the 

problem, while the presence and absence of tail patterns 

interact with the receptive field, as exemplified by [14]. 

6.3. Different Types of Tail Patterns - A Brief 

Explanation 

We find that saturation is subject to noise induced by 

certain features of the neural architecture. The increase or 

decrease in a number of filters from layer to layer, the use of 

11 convolutions and downsampling layers are common 

culprits for zig-zag-like behavior or sudden dips and spikes in 

saturation. An example for the latter is DenseNet18 in Fig. 

9b. It has to be stressed that these factors are not random nor 

create non-reproducible perturbations. Instead, they usually 

result in anomalous patterns that are very stable over multiple 

runs (which is exemplified by [13]). Logistic regression 

probes are considerably more robust against the 

aforementioned properties. However, they are influenced by 

the path that the information takes during the forward pass, 

revealing different types of tail patterns that can be 

differentiated based on the processing in the tail-layers. The 

three examples found commonly are exemplified in Fig. 9. 

These examples also give insights into how neural networks 

process information differently, which is the main reason why 

we dedicate an additional section to these findings in this 

paper. All the networks are trained on Cifar10 using a 3232 

pixel input resolution. In Fig. 9a we find a pass-through tail, 

where the layers process the information but do not advance 

the quality of the intermediate solution. The second type of 

tail, depicted in Fig. 9b, is caused by the multiple pathways 

inside the DenseBlock of DenseNet. Information can pass 

from any previous layer to the current layer within the 

DenseBlock, effectively allowing the information to skip 

layers. When layers are skipped, the intermediate solution 

quality degrades and instantaneously recovers after the 

skipped section is over. The latter is apparent in the depicted 

example by the high model performance relative to the probe 

performance of the last DenseBlock layers. This phenomenon 

 

  
(a) (b) 

  
(c) (d) 

Fig. 8: Performance of the logistic regression probes past the border layer are miniscule, (a) VGG11 with ⅛ filters per 

layer, (b) VGG11 with ⅛ filters per layer, (c) VGG16 with ⅛ filters per layer, and (d) VGG19 with ⅛ filters per layer. The 

performance is improved even though the capacity of each layer is reduced to ⅛ of the original capacity. This indicates 

that the networks are unable to shift processing to otherwise unused layers even if the capacity is limited. This is 

consistent with observations made by Richter et al. [14]. 
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(a) 

 

(b) 

 

(c) 

Fig. 9: (a) VGG16 tail layers maintain the quality of the intermediate solution, (b) The tail of DenseNet18 shows decay in 

probe performance, indicating that the last DenseBlock is skipped entirely [12], and (c) ResNet34 skips most residual blocks in 

the tail, which is apparent by the zig-zag pattern in probe performances caused by the starts and ends of skip-connections [12]. 

Depending on the neural architecture, tail patterns may deviate in their appearance in probe performance. In sequential 

architectures (a) the layers maintain the quality of the intermediate solution. If shortcut connections exist in the architecture, 

layers may be skipped. Skipped layers are apparent by their decaying probe performance [12]. This is apparent in DenseNet18 

(b). 

 

was initially observed in a simple MLP example by Alain and 

Bengio [12]. If necessary, the signal may jump more than a 

single building block in the architecture. An example of this 

can be seen in Fig. 9c on a ResNet34 architecture. This 

jumping is indicated by the zig-zag-pattern in the probe 

performance, where the higher performing layer resembles 

the first and the lower performing layer the second layer of a 

residual block. This shows that architecture decisions, which 

are influencing the potential pathways that the information 

can take from input to output, can have a significant influence 

on the way the model processes (or chooses not to process) 

information. In any case, the semantic of the tail-pattern 

remains unchanged, since a skipped layer and an 

unproductive layer can both be considered a parameter and 

computational inefficiency. 

7. CONCLUSION 

In this work, we explored the properties of the saturation 

metric in more detail and integrated this knowledge with 

insights from [13] and [14]. We have shown that model 

capacity and problem difficulty have opposite effects on the 

saturation value, as could be expected. A more surprising 

observation concerns the influence of individual layer 

capacity on the inference process: the tested models seem to 

be unable to shift processing to other layers, when some 

layers have substantially higher or lower capacity. An 

analysis of the evolution of saturation patterns during training 

revealed that they converge at a similar pace as the loss of the 

model, with saturation increasing during training. The way 

saturation evolves also gives hints on the properties of the 

dataset, but it is not influenced by the model over-fitting. 

These insights allow us to expand upon the optimization 

strategies for neural architectures, proposed in our previous 

work. We demonstrate quantitatively that the average 

saturation of a model is indicative of over- and under-

parameterization. This allows us to adjust the width of the 

model effectively. We further show that this property is 

independent of the tail pattern. The tail pattern is a symptom 

of a different design flaw, related to the depth of the neural 

network. Hence, we show that multiple axes of neural 

network design (depth and width) can be optimized in an 

informed manner using saturation. Our optimization 

strategies still require one or multiple training runs of the 

model, which could be seen as a disadvantage compared to 

pruning techniques like PCA-pruning [9-11]. On the other 

hand, our approach is architecture-independent, which we 

demonstrate on multiple experiments, while also being able 

to detect and resolve under-parameterization. The latter 

cannot be addressed by pruning algorithms. Furthermore, we 

demonstrate that saturation converges early during training, 

greatly reducing the cycle time of experiments, since 

pathological inefficiencies can be diagnosed before training 

has finished. However, the current approach is still too noisy 

to allow narrowing design decisions on a layer-by-layer basis. 

While we demonstrate that tail-patterns are similar for 

different types of architectures, some architectural properties 

like down sampling and skip-connections induce artefacts 
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into the saturation values, making a layer-by-layer analysis 

harder to read. Therefore, we seek to combine this approach 

with the analysis of the receptive field, which was shown to 

greatly impact the presence of tail patterns [14], to make the 

diagnosis of inefficiencies more precise and robust. 
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