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Abstract: Direct Position Determination (DPD) is known as an optimal, single-step technique for localizing co-channel 

signal sources since it processes the data gathered from all the array receiver elements together. In contrast, the 

commonly used radio location techniques include two independent stages. First, they estimate some initial parameters 

like direction, time, time-difference, frequency of arrival, etc., or their combination, and second, they localize signal 

sources using the triangulation of loci generated by the first stage. This disjoint structure leads to the sub-optimality of 

conventional localization algorithms. In this paper, we compare the Location root-mean-square-Error Lower Bounds 

(LELB) for DPD and position finding by DOA (PF-DOA) to prove the superiority of DPD over PF-DOA, which are 

commonly used for tactical fields or outdoor applications. Moreover, we demonstrate the advantages of DPD for indoor 

localization applications compared to PF-DOA techniques in terms of localization accuracy. We also introduce the single-

group-array (SGA) structure for DPD in indoor applications and reveal that it outperforms both the PF-DOA and DPD 

with a classical multi-group-array (MGA) structure. 
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1. INTRODUCTION 

1.1. Background 

During the recent decades, there has been a growing 

interest in the localization of co-channel signal sources by 

using array signal processing techniques. Civil radio 

frequency band monitoring, wildlife protection, seismology, 

sonar, and defense are some of prevalent outdoor localization 

applications. More recently, thanks to technical 

improvements, some indoor localization applications have 

also attracted attention, especially in the medical labs where 

wireless medical telemetry systems (WMTS) are an instance 

of non-invasive medical diagnose procedures [1]. 

From the estimation theory viewpoint, conventional 

localization techniques are sub-optimal since they have two 

separated stages. First, they estimate some initial parameters 

such as the direction of arrival (DOA), time of arrival (TOA), 

time-difference of arrival (TDOA), or frequency-difference 

of arrival (FDOA), or the received signal strength (RSS), and 

second, they intersect the outcome loci from the first stage to 

localize the targets. As a matter of fact, the DOA-based 

position finding (PF-DOA) can be considered as the most 

commonly-used localization method. 

Direct position determination (DPD) has lately been 

proposed as a single-step optimal technique for multiple co-

channel signal localization by jointly using all data captured 

from sensor elements of all arrays. DPD is a statistical 

approach that uses a spatial-benefit function (SBF) whose 

peaks or extrema locate the signal transmitters. The SBF is 

the outcome of a mathematical solution to the localization 

problem, which is based on the statistical properties 

(normally covariance matrix) of the signals sensed on the 

array elements. These solutions are commonly referred to as 

beamformers. However, higher accuracy of the DPD method 

can be achieved at the expense of some extra hardware 

capabilities, such as synchronous sampling of all grouped 

receiver elements. 

The main contribution of this paper consists of deriving 

Cramer-Rao lower bound (CRLB) based formulations of 

Location root-means-square-Error (LELB) for DPD and PF-
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DOA methods in a unified framework. We also compare 

these bounds both analytically and numerically for outdoor 

and indoor applications to prove the superiority of DPD over 

traditional PF-DOA methods. Moreover, we propose a new 

structural deployment of the antenna hardware referred to as 

single-group-array (SGA) instead of the commonly used 

multi-group-array (MGA) to provide increased accuracy for 

DPD in indoor applications. Finally, we compare the DPD-

SGA and DPD-MGA methods in both analytical and 

numerical ways in a WMTS lab scenario. 

1.2. Literature Survey 

Despite the long-time background of the PF-DOA 

methods, the extraction of CRLB for DOA estimation and PF-

DOA is relatively recent. The CRLB for DOA estimation 

using vector and higher-order sensor arrays is presented in 

[1]. A conditional CRLB for DOA estimation and array 

calibration is provided in [2]. Moreover, a stochastic CRLB 

analysis for DOA estimation in the spherical harmonic’s 

domain is addressed in [3]. More recently, a derivation and 

comparison of CRLB are presented in [4] for DOA estimators 

under the partial relaxation framework. Also, a CRLB 

analysis of data fusion for fingerprinting localization in non-

line-of-sight (NLOS) environments is introduced in [5]. 

Moreover, a CRLB for DOA estimation exploiting multiple 

frequency pairs is provided in [6].  

DPD was first proposed by Weiss et al. in 2004 for 

tactical field applications in their attempt to show that it 

exactly coincides with the maximum-likelihood (ML) 

estimation [7]. In [8] and [9], DPD is presented using 

different beamformers such as minimum-variance-

distortionless-response (MVDR) and multiple-signal-

classification (MUSIC), respectively. A comprehensive 

performance analysis of DPD with both MVDR and MUSIC 

beamformers is demonstrated in [10, 11]. Some DPD 

applications for wideband systems like radar and OFDM 

radios are provided in [12] and [13], respectively. In addition, 

a performance analysis of DPD using MUSIC algorithm is 

presented in [14]. Recently, a comparison of DPD 

performance using MVDR or MUSIC beamformers is 

demonstrated in [15]. A novel idea about applying free-space 

loss (FSL) in DPD problem formulation to have a more 

realistic path-length-dependent channel model is proposed 

more recently in [16]. Furthermore, a unified subspace fitting 

framework and its performance analysis for direct position 

determination in the presence of multipath propagation is 

addressed in [17]. In addition, a DPD method in 

asynchronous sensor networks is recently addressed in [18]. 
 

Table 1: Nomenclature used throughout the paper. 

Symbol Meaning 

{. }∗  Complex conjugate 

{. }𝑇  Transpose 

{. }𝐻  Hermitian (conjugate transpose) 

∘  Hadamard product of matrices 

⊗  Kronecker product of matrices 

tr(. ) Trace of a matrix 

diag(. ) Diagonal matrix of a vector 

blkdiag(. ) Block diagonal matrix of matrices 

‖. ‖ Frobenius norm of a matrix 

𝑰𝑁  Identity matrix of size N 

𝑱𝑁  Exchange matrix of size N 

𝑼𝑁  All-one matrix of size N 

There are some recent works on the localization of 

wireless capsule endoscopy (WCE) as a commonly used 

indoor localization application for WMTS. Pioneering 

research on the accuracy of RF positioning in multi-capsule 

endoscopy is demonstrated in [19]. A method of DOA-based 

endoscopy capsule localization and orientation estimation via 

unscented Kalman filtering is addressed in [20]. Moreover, a 

positioning algorithm for WCE based on RSS is provided in 

[21]. A review of localization strategies for robotic 

endoscopic capsules is presented in [22]. 

1.3. Nomenclature 

The conventions and notations presented in Table 1 will 

be used throughout the paper. Moreover, the DOA or azimuth 

angles are considered in navigation (clock oriented) and not 

in trigonometric mode. 

2. PROBLEM FORMULATION 

Consider 𝑀 properly separated 𝐿-element receiving 

sensor arrays with similar shapes and orientations. We 

assume 𝐾 sources transmitting unknown uncorrelated 

narrowband (NB) signals with baseband or analytical 

equivalents 𝑠𝑘(𝑡), 𝑘 = 1, … , 𝐾, located at enough distance 

from the receiving arrays satisfying far-field conditions. All 

transmitters and receiver sensors are assumed to be stationary 

during the observation period, so there is no Doppler 

frequency shift in the model. We aim at localizing 

transmitters using the sensors observed signals. The position 

of the 𝑘-th transmitter is denoted by the two- or three-

dimensional (2D or 3D) vector 𝒑𝑘. The NB analytical signal 

observed at the 𝑚-th array is given by an 𝐿 × 1 vector during 

the time interval 0 ≤ 𝑡 ≤ 𝑇 as 

𝒙𝑚(𝑡) = ∑ 𝒂𝑚(𝒑𝑘)𝐻𝑚(𝒑𝑘)𝒔𝑘(𝑡)

𝐾

𝑘=1

+ 𝒃𝑚(𝑡), (1) 

where 𝒂𝑚(𝒑𝑘) is the 𝑚-th array response to a signal emitted 

from 𝒑𝑘, 𝐻𝑚(𝒑𝑘) is a complex scalar characterizing the 

channel response between 𝒑𝑘 and the (reference point of) 𝑚-

th array, and 𝒃𝑚(𝑡) denotes the zero-mean, circular complex 

AWGN with variance 𝜎2 at the 𝑚-th array receiver. The 

transmitters are assumed constant during a localization 

period, i.e., we assume 𝑀 quasi-static channels. The 

observation time interval is 𝑇 ≫ max(𝜏𝑚(𝒑𝑘)) for the region 

of interest where 𝜏𝑚(𝒑𝑘) is the propagation delay between 𝒑𝑘 

and the reference point of the 𝑚-th array. Assuming enough 

distance between transmitters and receiver arrays, which 

makes the array responses only dependent on the DOA of the 

received signals, (1) can be expressed as 

𝒙𝑚(𝑡) = ∑ 𝒂𝑚(𝜙𝑚𝑘)𝐻𝑚𝑘𝒔𝑘(𝑡)

𝐾

𝑘=1

+ 𝒃𝑚(𝑡), (2) 

where 𝜙𝑚𝑘 is the north-oriented polar coordinate 

representation of the DOA of the signal received at the 𝑚-the 

array from 𝒑𝑘, and: 

𝐻𝑚𝑘 = 𝐻(𝑑𝑚𝑘, 𝛼𝑚𝑘) = 𝛼𝑚𝑘 𝑔𝑚𝑘

𝑑0

𝑑𝑚𝑘
e−𝑗2𝜋

𝑑𝑚𝑘
𝜆  (3) 

is the channel response between the 𝑚-th array and 𝑘-th 

transmitter with path length 𝑑𝑚𝑘, for a carrier with 

wavelength 𝜆, where 𝛼𝑚𝑘 characterizes all the stochastic 
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gains and attenuations through the channel path including the 

fading effect, 𝑑0 is the normalizing distance to consider FSL 

in channel response (e.g., 10𝜆), and 𝑔𝑚𝑘 is the deterministic 

channel gain at distance 𝑑0 from the 𝑘-th transmitter. The 

FSL is taken into account to produce a so-called dynamic 

sensor-array response (DSAR) according to [16]. The sample 

matrix version of (2) for 𝑁 snapshots of signals is in the 

following form 

𝑿𝑚 = 𝑨(𝝓𝑚)𝑯𝑚𝑺 + 𝑩𝑚 , (4) 

Where: 

𝝓𝑚 ≜ [𝜙𝑚1, … , 𝜙𝑚𝐾]𝑇 , (5) 

and 

𝑯𝑚 ≜ diag([𝐻𝑚1, … , 𝐻𝑚𝐾]). (6) 

To calculate the CRLB of our estimation problem, we 

need the sample covariance matrix of sensed signals 𝑿𝑚 [23], 

which is defined as 

𝑹𝑚 ≜
1

𝑁
𝑿𝑚𝑿𝑚

𝐻  , (7) 

2.1. PF-DOA Formulation 

In a PF-DOA problem of co-channel signals, the DOAs 

of impinging waves to each array are estimated independently 

and without considering other arrays. The signal received at 

the reference point of the 𝑚-th array can be expressed as 

𝑠𝑚𝑘(𝑡) ≜ 𝐻𝑚𝑘 𝑠𝑘(𝑡), (8) 

so, Eq. (4) can be written as 

𝑿𝑚 = 𝑨(𝝓𝑚)𝑺𝑚 + 𝑩𝑚, (9) 

where 𝑿𝑚 and 𝑩𝑚 are  𝐿 × 𝑁 matrices of the sample received 

signals and noise for sensor elements of the 𝑚-th array, 

respectively, and 𝑺𝑚 is the 𝐾 × 𝑁 sample matrix of the 

signals received at the reference point of the 𝑚-th array. The 

sample covariance matrix of (7) is in the form of 

𝑹𝑚 ≜ 𝑨(𝝓𝑚)𝑹𝑆𝑚𝑨𝐻(𝝓𝑚) + 𝑹𝐵𝑚 , (10) 

where source signals and noise sample covariance matrices 

are defined as 

𝑹𝑆𝑚 ≜
1

𝑁
𝑺𝑚𝑺𝑚

𝐻  , 𝑹𝐵𝑚 ≜
1

𝑁
𝑩𝑚𝑩𝑚

𝐻  . (11) 

2.2. DPD Formulation 

In a DPD problem of co-channel signals, the locations of 

signal emitters are estimated using signals sensed in all arrays 

together. Here, we define the pointing vector of the m-th 

array’s reference point to position 𝒑𝑘 as 

�̃�𝑚(𝒑𝑘) ≜ 𝒂(𝜙𝑚𝑘)𝐻𝑚𝑘 , (12) 

so, Eq. (4) can be written as 

𝑿𝑚 = �̃�𝑚(𝑷)𝑺 + 𝑩𝑚 ,  (13) 

where 𝑿𝑚 and 𝑩𝑚 are 𝐿 × 𝑁 matrices of the sample received 

signals and noise for sensor elements of the 𝑚-th array, 

respectively, and 𝑺 is the 𝐾 × 𝑁 sample matrix of the emitted 

signals. The sample covariance matrix of (7) is in the form of 

𝑹𝑚 ≜ �̃�𝑚(𝑷)𝑹𝑆�̃�𝒎
𝐻 (𝑷) + 𝑹𝐵𝑚 , (14) 

where source signals and noise sample covariance matrices 

are defined as 

𝑹𝑆 ≜
1

𝑁
𝑺𝑺𝐻 , 𝑹𝐵𝑚 ≜

1

𝑁
𝑩𝑚𝑩𝑚

𝐻  . (15) 

Finally, the global covariance matrix of all sensors will be  

𝑹 ≜ blkdiag(𝑹1. … . 𝑹𝑀) . (16) 

The dimensions of 𝑹 in (16) are 𝑈 × 𝑈 where 𝑈 = 𝐿𝑀. 

3. DERIVATION OF THE CRAMER-RAO LOWER BOUND  

In array processing theory, whenever a single snapshot is 

assumed to be a zero-mean Gaussian random variable, and 

when successive snapshots are supposed to be statistically 

independent, the (i,j)-th element of the Fisher information 

matrix (FIM) for any parameter estimation is defined as [23] 

𝑭𝑖𝑗 = −𝑁 tr (
𝜕ℜ−1

𝜕𝜓𝑖

𝜕ℜ

𝜕𝜓𝑗
) = 𝑁 tr (ℜ−1

𝜕ℜ

𝜕𝜓𝑖
ℜ−1

𝜕ℜ

𝜕𝜓𝑗
) , (17) 

where ℜ is the covariance matrix for a single snapshot, 𝑁 is 

the number of observations of array signals, and 𝝍 = [𝜓𝑖 , 𝜓𝑗] 

is the vector of the estimated parameters. The CRLB states 

about the unbiased estimate �̂� that 

𝐯𝐚𝐫(�̂�) ≥ tr(𝑭−1) . (18) 

There are some important considerations [23]. 

 The physical dimension of ℜ is power. 

  ℜ contains information about signal and noise powers. 

 
𝜕ℜ

𝜕𝜓𝑖
 contains information about the array geometry. 

3.1. LELB for PF-DOA 

In a PF-DOA problem, the location of any arbitrary point 

𝒑 in the monitoring area is determined by the estimation of 

DOAs of signals impinging each of the 𝑀 array elements 

from that point. Then, for the 𝑚-th array, the estimation 

parameter is �̂� = [𝜙𝑚], and from (17), the single-element 

FIM (scalar) is written as 

𝐹𝑚 = 𝑁 tr ([𝑹𝑚
−1

𝜕𝑹𝑚

𝜕𝜓𝑖
]

2

) . (19) 

For simplicity, we rewrite (10) for the 𝑚-th array as 

𝑹𝑚 ≜ 𝑨𝑹𝑆𝑚𝑨𝐻 + 𝜎2𝑰𝐿 , (20) 

where 𝜎2 is the noise power that is supposed to be constant 

for all receiver elements of the whole array. 

Fig. 1: Parameters definitions for 𝒎-th array properties 

 

dm 

𝜙𝑚  

Y 

Ref. point 

l-th sensor element 

of m-th array 

to k-th transmitter 

dl 

X 

𝛽𝑙 
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To achieve the matrix inversion 𝑹𝑚
−1, we can use direct 

computations, or we can apply the matrix inversion lemma to 

(20) as 

𝑹𝑚
−1 = 𝜎−2(𝑰 − 𝑨(𝑨𝑨𝐻 + 𝜎2𝑹𝑆𝑚

−1 )𝑨𝐻) , (21) 

which is a proper way for a 𝐾 × 𝐾 diagonal matrix 𝑹𝑆𝑚 

(uncorrelated source signals at the 𝑚-th array reference point) 

that can be simply inverted compared with direct inversion of 

𝐿 × 𝐿 non-diagonal 𝑹𝑚 with 𝐾 < 𝐿 and usually 𝐾 = 1 for 

numerical analysis. 

According to (20), we have 

𝜕𝑹𝒎

𝜕𝜙𝑚
=

𝜕𝑨

𝜕𝜙𝑚
𝑹𝑆𝑚𝑨𝐻 + 𝑨𝑹𝑆𝑚

𝜕𝑨𝐻

𝜕𝜙𝑚
 . (22) 

To compute the CRLB for DOA estimation of the signal 

emitted from the 𝑘-th transmitter, i.e., 𝒑 = 𝒑𝑘, we notice that 

except for the emitter located at the point 𝒑𝑘, other emitters 

are assumed to have fixed locations, so they can be ignored 

during the derivation procedure. We thus have 

𝜕𝑨

𝜕𝜙𝑚
=

𝜕

𝜕𝜙𝑚

[𝒂1, … , 𝒂𝐾] = [𝟎, … ,
𝜕𝒂𝑘

𝜕𝜙𝑚
, … 𝟎] . (23) 

For notation simplicity, we remove the subscript 𝑘 and 

use 𝒂 = 𝒂𝑘. Assuming that the signal emitted from 𝒑 is 

uncorrelated with other signals, we have 

𝜕𝑹𝒎

𝜕𝜙𝑚
=

𝜕𝒂

𝜕𝜙𝑚
𝑃𝑚𝒂𝐻 + 𝒂𝑃𝑚

𝜕𝒂𝐻

𝜕𝜙𝑚
= 𝑃𝑚

𝜕(𝒂𝒂𝐻)

𝜕𝜙𝑚
 , (24) 

where 𝑃𝑚 is the 𝑘-th diagonal element of 𝑹𝑆𝑚 representing 

the power received at the reference point of the 𝑚-th array 

from the emitter at the point 𝒑. According to Fig. 1, for the 𝑙-
th element of 𝒂, we have 

𝑎𝑙 = exp (𝑗
2𝜋

𝜆
𝑑𝑙 cos(𝛽𝑙 − 𝜙𝑚)) , (25) 

𝜕𝑎𝑙

𝜕𝜙𝑚
= 𝑗

2𝜋

𝜆
𝑑𝑙 sin(𝛽𝑙 − 𝜙𝑚) 𝑎𝑙 , (26) 

where 𝑑𝑙 and 𝛽𝑙 are the distance and angle of the 𝑙-th element 

with respect to the reference point of the 𝑚-th array, 

respectively. Then, we have 

𝜕𝒂

𝜕𝜙𝑚
= 𝑗

2𝜋

𝜆
diag(𝝆(𝜙𝑚)) 𝒂 , (27) 

𝜕𝒂𝐻

𝜕𝜙𝑚
= −𝑗

2𝜋

𝜆
𝒂𝐻 diag(𝝆(𝜙𝑚)) , (28) 

where 

𝝆(𝜙𝑚) ≜ 𝑗
2𝜋

𝜆
𝒅 ∘ sin(𝜷 − 𝜙𝑚) , (29) 

where 𝒅 = [𝑑1, … , 𝑑𝐿]𝑇 and 𝜷 = [𝛽1, … , 𝛽𝐿]𝑇. Considering 

(24), we have 

𝜕𝑹𝒎

𝜕𝜙𝑚

= 𝑃𝑚𝑪𝜙 ∘ (𝒂𝒂𝐻), (30) 

where: 

𝑪𝜙 ≜ diag(𝝆(𝜙𝑚)) 𝑼𝐿 − 𝑼𝐿 diag(𝝆(𝜙𝑚)) . (31) 

Now, we can determine 𝐹𝑚, and according to CRLB about 

unbiased DOA estimation of �̂�𝑚, we have 

var(�̂�𝑚) ≥
1

𝐹𝑚
 . (32) 

Finally, due to the Euclidian summability of variances, we 

can write the total localization variance for a PF-DOA 

method (like triangulation) as 

var(�̂�) ≥
1

𝑀
∑ 𝑑𝑚

2

𝑀

𝑚=1

var(�̂�𝑚) = LELB𝑃𝐹−𝐷𝑂𝐴 , (33) 

where 𝑑𝑚 is the distance between the 𝑚-th array and the 

signal emitter at 𝒑. 

Moreover, considering (20), the linear signal-to-noise-ratio 

(SNR) at the 𝑚-th array can be expressed as 

SNR𝑚 =
tr(𝑨𝑹𝑆𝑚𝑨𝐻)

𝐿𝜎2
 , (34) 

where, according to (11), 𝑹𝑆𝑚 is the covariance matrix of the 

signals received at the reference point of the 𝑚-th array (not 

at the transmitter’s location). 

3.2. CRLB and LELB for DPD 

In a DPD problem, the location of any arbitrary point 𝒑 

in the monitoring area is directly estimated by jointly using 

signal observations from 𝑀 numbers of the 𝐿-sensor arrays. 

For notational simplicity, we rewrite (14) as 

𝑹𝑚 ≜ �̃�𝑚𝑹𝑆�̃�𝒎
𝐻 + 𝜎2𝑰𝐿 , (35) 

and by considering the definition of 𝑹 in (16), we can write 

𝑹 ≜ �̃�𝑹𝑆�̃�𝐻 + 𝜎2𝑰𝑈.  (36) 

So, using (17) for estimation of 𝝍 = [𝑥, 𝑦]𝑇 leads to 

𝑭𝑖𝑗 = 𝑁 tr (𝑹−𝟏 𝜕𝑹

𝜕𝜓𝑖
𝑹−𝟏 𝜕𝑹

𝜕𝜓𝑗
) . (37) 

To compute 𝑹−𝟏 for an MGA structure, we consider (16) as 

𝑹−𝟏 ≜ blockdiag(𝑹𝟏
−𝟏, … , 𝑹𝑴

−𝟏) , (38) 

which states that we can divide the inversion problem to 𝑴 

inversions of smaller dimension matrices to reduce the 

computational load. Moreover, we can use the matrix 

inversion similar to (21) for calculating 𝑹−𝟏 or 𝑹𝒎
−𝟏. 

To calculate 
𝜕𝑹

𝜕𝜓𝑖
 , we can use similar steps to (22)-(24) by 

which we get  

𝜕𝑹

𝜕𝜓𝑖
=

𝜕�̃�

𝜕𝜓𝑖
𝑃�̃�𝐻 + �̃�𝑃

𝜕�̃�𝐻

𝜕𝜓𝑖
= 𝑃

𝜕(�̃��̃�𝐻)

𝜕𝜓𝑖
 , (39) 

where �̃� is the 𝑘-th column of �̃� with size 𝑈 × 1 and 𝑃 is the 

𝑘-th diagonal element of 𝑹𝑆 representing the emitting power 

of the source at 𝒑. We have removed subscript 𝑘 for notation 

simplicity. Considering (3), regarding the 𝑢-th element of �̃�, 

we have 

�̃�𝑢 = 𝛼𝑢𝑔𝑢

𝑑0

𝑑𝑢
exp (−𝑗

2𝜋

𝜆
𝑑𝑢) , (40) 

𝜕�̃�𝑢

𝜕𝜓𝑖
= − (

1

𝑑𝑢
+ 𝑗

2𝜋

𝜆
) �̃�𝑢

𝜕𝑑𝑢

𝜕𝜓𝑖
 , (41) 

where 𝑑𝑢 is the distance between 𝒑 and the 𝑢-th sensor 

element. Moreover, we have 

𝑑𝑢
2 = (𝑥 − 𝑥𝑢)2 + (𝑦 − 𝑦𝑢)2 , (42) 
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𝜕𝑑𝑢

𝜕𝑥
=

𝑥 − 𝑥𝑢

𝑑𝑢
= sin 𝜙𝑢 , (43) 

𝜕𝑑𝑢

𝜕𝑦
=

𝑦 − 𝑦𝑢

𝑑𝑢
= cos 𝜙𝑢 , (44) 

where 𝜙𝑢 is the direction (azimuth) of 𝒑 from 𝑢-th element’s 

viewpoint. Therefore, for 𝜓𝑖 = 𝑥, we have 

𝜕�̃�

𝜕𝑥
= diag(𝜻 ∘ sin 𝝓) �̃� , (45) 

𝜕�̃�𝐻

𝜕𝑥
= �̃�𝐻 diag(𝜻∗ ∘ sin 𝝓) , (46) 

where 𝜻 = [𝜁1, … , 𝜁𝑈]𝑇, 𝜁𝑢 = − (
1

𝑑𝑢
+ 𝑗

2𝜋

𝜆
), and 𝝓 =

[𝜙1, … , 𝜙𝑈]𝑇. Using (39) and following similar steps for 𝑥 

and 𝑦, we have 

𝜕𝑹

𝜕𝑥
= 𝑃 𝑪𝑥 ∘ (�̃��̃�𝐻), (47) 

𝜕𝑹

𝜕𝑦
= 𝑃 𝑪𝑦 ∘ (�̃��̃�𝐻), (48) 

where 

𝑪𝑥 ≜ diag(𝜻 ∘ sin 𝝓) 𝑾 + 𝑾 diag(𝜻∗ ∘ sin 𝝓) , (49) 

𝑪𝑦 ≜ diag(𝜻 ∘ cos 𝝓) 𝑾 + 𝑾 diag(𝜻∗ ∘ cos 𝝓) , (50) 

where 𝑾 = 𝑰𝑀⨂𝑼𝐿. 

In fact, 𝑾 masks any statistical dependency between 

signals received by different arrays in accordance with the 

definition of classical DPD. Finally, we can determine the 

elements of 𝑭 and then derive the CRLB. For an unbiased 

estimation �̂�, the CRLB states that 

var(�̂�) ≥ tr(𝑭−𝟏). (51) 

The total SNR in (36) is given by 

SNR =
tr(�̃�𝑹𝑆�̃�𝐻)

𝑈𝜎2  , (52) 

and the specific SNR due to the 𝑘-th transmitter will be 

SNR𝑘 =
tr(�̃�𝒌𝑃𝑘�̃�𝒌

𝑯)

𝜎2 =
𝑃𝑘�̃�𝒌

𝑯�̃�𝒌

𝜎2 , (53) 

where 𝑃𝑘 is the power transmitted from the 𝑘-th emitter. 

Since the fading coefficients in �̃� are considered constant 

during each observation interval of DPD estimation, we can 

average the CRLBs resulting from several observation 

intervals to achieve a more reliable criterion for the lower 

bound [24]. For an MGA structure we use LELB instead of 

CRLB abbreviation. 

4. DPD FOR INDOOR APPLICATIONS 

In addition to outdoor applications such as localization in 

tactical fields, there are some indoor applications that should 

be considered. An instance of common indoor localization 

applications is the medical lab of WMTS, which uses a 

frequency of about 1430 MHz in accordance with the Federal 

Communications Commission (FCC) rules [25].  

 

Fig. 2: Some examples of MGA and SGA structures 

One essential rule in antenna array geometry is that the 

element spacing and the whole array dimensions should be 

about the carrier wavelength. This provides an opportunity 

for indoor applications to exploit the default localization array 

structure, i.e., MGA to be used as an SGA one. Fig. 2 shows 

the concept of MGA and SGA structures in which 𝑈 is the 

total number of sensor elements. In DPD, the SGA structure 

provides more accuracy and resolution than the MGA since it 

takes into account the statistical dependency (covariance) 

between observations of all the sensor elements together, in 

contrast to the MGA structure that ignores any statistical 

dependency between the elements that belong to different 

groups (arrays). 

For an SGA structure, (13) can be written as  

𝑿 = �̃�(𝑷)𝑺 + 𝑩 ,  (54) 

where 𝑿 and 𝑩 are 𝑈 × 𝑁 matrices of the sample received 

signals and noise for sensor elements of the whole array, 

respectively, and 𝑺 is the 𝐾 × 𝑁 sample matrix of the emitted 

signals. The sample covariance matrix of (54) is in the form 

of 

𝑹 ≜ �̃�(𝑷)𝑹𝑆�̃�𝑯(𝑷) + 𝑹𝐵 , (55) 

which is not a sparse matrix such as the global covariance 

matrix in (16) since the covariance between the observations 

of all 𝑈 sensor elements of the SGA is taken into account. The 

rest of the CRLB extraction for the SGA structure is similar 

to the formulations presented in Subsection 3.2. 

5. SIMULATIONS AND NUMERICAL ANALYSIS 

This section compares the numerically determined root 

mean square error (RMSE) of localization and analytically 

derived CRLB and LELB versus SNR. Each RMSE value is 

obtained by 100 Monte-Carlo experiments, each including 64 

samples of array observations. All values are normalized to 

carrier wavelength. 

We first consider a tactical field map, as depicted in Fig. 

3. We assume three receiving arrays (M=3) where each array 

is composed of seven sensor elements (L=7). All arrays are 

similarly deployed in the uniform circular array (UCA) or 

uniform linear array (ULA) structures that we refer to as 

UCA7 and ULA7, respectively. The element spacing is equal 

to about half of the wavelength of a 300 MHz carrier (0.5×1 

m). We assume that the transmitter is emitting an unknown 

signal located at point (1500, 1500) m. 

(a) Multiple Group Array (MGA) 

M = 3, L = 4 

(b) Single Group Array (SGA) 

U = M×L = 12 
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Fig. 4 and Fig. 5 show the LELB normalized to 

wavelength versus SNR for both PF-DOA and DPD for the 

case of UCA and ULA array geometries, respectively. We can 

observe a superior performance in terms of localization 

accuracy achieved by DPD over PF-DOA, especially at low 

SNRs, for about 2-2.5 dB and 3-4 dB for UCA and ULA 

geometries, respectively. We have also shown the RMSE 

value associated with DPD using numerical analysis. 

The second performance analysis is related to a typical 

indoor localization problem as depicted in Fig. 6 in which 

both MGA and SGA structures are deployed. We assume 

eight receiving arrays (M=8) where each array is composed 

of five sensor elements (L=5). All arrays are similarly 

deployed in the ULA structure that we refer to as ULA5. The 

element spacing is equal to about three times the wavelength, 

which is 1430 MHz carrier (3×21 cm). We assume that one 

transmitter is emitting an unknown signal located at point (0, 

0) m at the array center.  

Fig. 7 shows the LELB normalized to wavelength versus 

SNR for PF-DOA and DPD with MGA structure, and CRLB 

for DPD with SGA structure. It can be easily seen that DPD-

MGA outperforms PF-DOA by about 5 dB, and DPD-SGA 

outperforms DPD-MGA by about 12 dB. The normalized 

RMSE values of DPD-MGA and DPD-SGA are presented as 

well using numerical analysis.  

 

Fig. 3: The tactical field geometry considered with three 7-

element ULA or UCA arrays and one transmitter. 
 

 

Fig. 4: The performance comparison for DPD and PF-DOA 

using UCA7 arrays in a typical tactical field 

 

Fig. 5: The performance comparison of DPD and PF-DOA 

using ULA7 arrays in a typical tactical field 

 

Fig. 6: A typical indoor localization application with eight 

5-element ULAs as an SGA with 40 sensor elements 

 

Fig. 7: The performance comparison for DPD and PF-DOA 

in an indoor application with the array depicted in Fig. 6 

using both MGA and SGA structures 

6. CONCLUSION 

In this paper, we derived the formulations of CRLB and 

LELB for DPD and PF-DOA techniques of localization of co-

channel signals for outdoor and indoor applications. By 

comparing the LELBs for outdoor applications, we showed 

that DPD can achieve localization RMSE of about 3dB lower 

than the PF-DOA method, which is a noticeable improvement 

because this means that the effective depth of the operational 

field has been enlarged by about 70%. 

For indoor applications, we first showed that DPD with 

MGA structure outperforms the PD-DOA by about 5 dB. 

Also, we pointed out the opportunity of using an SGA 

ULA7 

UCA7 
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structure instead of the commonly used MGA structure and 

proved the superiority of using SGA over MGA by about 

13dB in localization accuracy, which is a significant 

enhancement in accuracy for indoor localization applications. 
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