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Abstract: The mapping of DNA subsequences to a known reference genome, referred to as “short-read mapping”, is 

essential for next-generation sequencing. Hundreds of millions of short reads need to be aligned to a tremendously long 

reference sequence, making short-read mapping very time-consuming. Day by day progress in Next-Generation 

Sequencing (NGS) is enabling the generation of DNA sequence data at ever faster rates and lower cost, which means a 

dramatic increase in the amounts of data being sequenced. Nowadays, sequencing of nearly 20 billion reads (short DNA 

fragments) costs about 1000 dollars per human genome, and sequencers can generate 6 Terabases of data in less than 

two days. This article considers the seed extension kernel of the Burrows-Wheeler Alignment (BWA) genomic mapping 

algorithm for accelerating with FPGA devices. We propose an FPGA-based accelerated implementation for the seed 

extension kernel. The Smith-Waterman algorithm is used during the seed extension to find the optimum alignment 

between two sequences. The state-of-the-art architectures use 1D-systolic arrays to fill a similarity matrix. Based on the 

best score out of all match combinations, mismatches and gaps are computed. The cells on the same anti-diagonal are 

calculated in parallel in these architectures. We propose a novel 2-dimensional architecture. Our new modified 

algorithm is based on two editing and calculating phases. In each step of the calculation, some errors may occur in 

which all the cells on the same row and same column are computed in parallel, which significantly speeds up the 

process. Needless to say, these probable errors will be omitted before the next step of the calculation begins. Our 

simulation results show that the proposed architecture can work with up to 312 MHz frequency in Synopsys Design-

Compiler for 180-nm CMOS technology and be up to 570x and 1.4x faster than the software execution and 1D-systolic 

arrays, respectively. 
 

Keywords: Bioinformatics, FPGA, smith-waterman. 

 
Article history  

Received 20 December 2020; Revised 27 March 2021; Accepted 15 August 2021; Published online 11 April 2022. 

© 2022 Published by Shahid Chamran University of Ahvaz & Iranian Association of Electrical and Electronics Engineers (IAEEE) 
How to cite this article  

M. Taheri, and A. Mahani, "Novel 2-D BWA-MEM FPGA accelerator for short-read mapping of the whole human 

genome," J. Appl. Res. Electr. Eng., vol. 1, no. 2, pp. 203-210, 2022. DOI: 10.22055/jaree.2021.36116.1015  

 

1. INTRODUCTION 

As a result of advances in next generation sequencing 

(NGS) techniques, the amount of genomic data is 

accumulating extremely rapidly [1]. Some projects will 

grow on an order of 1018 bytes per year by the next decade 

[2, 3]. Naturally, data of such scales impose a significant 

processing load in many aspects of bioinformatics. The new 

NGS techniques reduce the cost of generating a whole 

human genome, which, in return, further increases the 

amount of data [4]. Typically, NGS techniques produce 

millions of short reads, usually less than 200 bases in length 

[5]. In many cases, the short reads must be aligned to a 

reference sequence to obtain useful information about the 

sequenced molecule [6]. There are several different 

alignment algorithms to choose from, among which dynamic 

programming solutions, such as Bowtie [7], Burrows-

Wheeler Alignment (BWA) [8], and SOAP2 [9], are shown 

to provide a better trade-off between the accuracy and speed. 

The most well-known, the BWA-MEM algorithm, which is 

popular for its high accuracy, is considered in this article as 

the target for FPGA acceleration. 

The BWA-MEM algorithm, introduced in [10], 

manages superior alignment to a number of its 

contemporaries, but at the cost of a higher computational 

load. The three main operations in the BWA- MEM 
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algorithm are (1) generating the super-maximal exact 

matches (SMEMs), (2) extending the seeds, and (3) 

generating the final outputs. The three kernels that perform 

these operations are listed in Table 1 along with their main 

bottlenecks [11]. As shown in Table 1, the step with the 

most severe computational bound is the seed extension 

kernel, which accounts for almost 33% of the execution 

time. A similarity matrix is dynamically filled during the 

seed extension operation. To compute the value of the cell 

(i, j) in the similarity matrix, the values of the following 

cells are required: (1) the west cell at (i, j-1), (2) the north 

cell at (i-1, j), and (3) the north-west cell at (i-1, j-1). State-

of-the-art architectures aimed at accelerating this problem use 

1D-systolic arrays to fill the similarity matrix [8]. 

Specifically, for such computations, 1D-systolic arrays use a 

1-dimensional array of n processing elements (PEs) where n 

is the number of cells on the main diagonal [11]. Note that 

increasing the number of PEs in such an architecture does 

not reduce execution time. 

This article proposes a novel FPGA-based architecture to 

speed up the process of filling the similarity matrix, the 

bottleneck of the seed extension kernel. To the best of our 

knowledge, this is the first 2-dimensional architecture that, 

unlike 1D-systolic arrays, achieves higher throughput by 

increasing the number of PEs. The proposed architecture can 

compute the cells on the same row and on the same column 

in parallel as opposed to existing architectures that can only 

compute the cells on the same anti-diagonal in parallel. 

Novel PEs are proposed that compute cells in two phases: 

(1) the calculation phase that roughly approximates the cells 

and (2) the error compensation phase that fixes the 

potentially introduced errors during the first phase. The two 

phases are described in detail in Section 3. 

The rest of the paper is organized as follows. Section 2 

provides general information on the BWA-MEM algorithm 

and related work. The mathematical description of the 

proposed architecture, the PE designs, and the final 

hardware implementation are discussed in Section 3. Section 

4 evaluates the proposed architecture. Finally, Section 5 

concludes the article. 

2. BACKGROUND 

This section describes the BWA-MEM algorithm and 

related previous works dedicated to its acceleration. DNA 

sequences are chains comprised of the four nucleotide 

monomers (A, C, G, T). Alternative permutations of these 

nucleotides typically encode alternate biochemical functions 

and products within the DNA. A 2-bit representation is used 

in our implementation for each of these four nucleotides. 

Although even simple organisms possess contiguous DNA 

exceeding a million nucleotides in length, DNA 

measurements (i.e. the products of sequencing machines) 

rarely produce sequences this long due to a combination of 

technical limits at present. In fact, it is common for leading 

sequencers to produce outputs, ‘reads’, on an order of 100 

nucleotides in length, obtained from unknown regions of the 

native DNA originally fed into the sequencer. 

As a result, pairwise local alignment, searching for 

similarities between a new read (the query) and anticipated 

DNA pattern (reference genome), is one of the first steps in 

bioinformatics  algorithms [12]. The main  workload  of  the 

Table 1: Profiling the BWA-MEM algorithm [11]. 

Kernel Execution time (%) Bound 

SMEM generation 56% Memory 

Seed extension 32% Computational 

Output generation 9% Memory 

Other 3% I/O 

BWA-MEM algorithm is aligning millions of short DNA 

reads against a reference genome (usually the human 

genome) [13]. The authors introduced a new low-power and 

high-speed bioinformatic engine, a hardware-accelerated 

base caller, for mobile sequencing applications [14]. There 

are also several other works providing a generalized 

methodology and insights for efficient implementation of 

the DNA sequencing algorithms [15–19]. 

Several techniques have been proposed to accelerate the 

Smith-Waterman inexact alignment algorithm. However, the 

seed extension step of this algorithm makes it inherently a 

slow design. Authors have provided a new 2-D technique 

regarding the Smith-Waterman inexact alignment algorithm 

in which they have used fix numbers for the match, 

mismatch, and gap penalty [20]. An FPNI structure is 

proposed in [21] that uses race logic and CMOS-gate 

representation and leads to compromising results in the case 

of flexible input read length and omitting unnecessary 

latency. This is a new re-configuration sequencing method 

for difference of read lengths that may take place as input 

data in which crucial drawbacks impact DNA sequencing 

methods. A hardware acceleration of the BWA-MEM 

genomics short read mapping for longer read length is 

implemented in [22]. This design is based on an architecture 

previously proposed in [11] where an FPGA-based 1D-

systolic array is used to accelerate the BWA-MEM 

genomics mapping algorithm. The main idea is to insert 

some exit points between the PEs of the 1D-systolic array to 

avoid unnecessary calculations for shorter reads. By doing 

so, shorter reads do not have to go through all of the PEs and 

can exit the array once they get to the first exit point. 

3. PROPOSED ARCHITECTURE 

This section describes the methodology proposed for 

filling the similarity matrix and introduces the new 

architecture for implementing the seed extension kernel of 

the BWA-MEM algorithm. 

Unlike the 1D-systolic array-based architectures, we 

propose a 2-dimensional architecture in which two different 

strings of PEs are assigned to all of the cells in the same rows 

and on the same columns. By doing so, the Smith-Waterman 

algorithm can be executed faster compared to the 1D-

systolic array-based architectures. Although the proposed 

architecture is more resource-hungry than 1D-systolic arrays, 

it runs significantly faster. Note that the 1D-systolic arrays 

cannot operate faster even with more PEs. Each PE 

computes the values of its assigned cells (fills the similarity 

matrix) in two phases that, in total, take three clock cycles. 

During the first phase, the calculation phase, the value of 

each cell is roughly approximated by the corresponding PEs. 

Then, the Errorflag signal is asserted and the second phase, 

i.e. the error editing phase, starts. The main advantage of our 

structure is that the rows and columns calculation of the 
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similarity matrix are performed independently. In some rare 

cases, the parallel calculations lead to approximation in the 

obtained scores. So, the editing phase (second phase) is 

needed to correct the approximated scores of the first phase.  

Fig. 1 shows how PEs are assigned to cells in the 

similarity matrix in the proposed method and in the 

previously reported 1D-systolic array-based architectures. 

The cells with the same numbers in Fig. 1a are computed 

simultaneously and the cells with the same colors in Fig. 1b 

can be computed in parallel in the proposed architecture. It 

can be clearly seen in Fig. 1 that the similarity matrix can be 

filled in fewer steps by using the proposed architecture (three 

versus five). 

Note that the 1D-systolic array needs only three PEs to 

fill the similarity matrix, while the proposed architecture 

uses five PEs. However, the main advantage of the proposed 

architecture is that more PEs are processed in parallel, 

thereby speeding up the process. Taking advantage of our 

two-phase architecture lets us better exploit the parallelism 

available in the process. The timing diagram of the proposed 

architecture is given in Fig. 2. As shown in this figure, when 

the first phase – the calculation phase – is completed, the PE 

may or may not perform the second phase. The error signal 

Errorflag is updated after the end of the calculation phase 

and, if it is set, then the 2nd phase (the editing phase) needs 

to be performed. 

The two phases of the proposed architecture and the 

details of its hardware implementation are thoroughly 

explained below. 

3.1. Calculation Phase 

During the calculation phase, an approximation of each 

cell is calculated. Depending on the position of the cell in 

the similarity matrix, this approximation follows different 

rules, as described below. 

3.1.1. Cells on the main diagonal 

For the cells on the main diagonal, we use the exact PE 

functionality, as given by: 

𝐷𝑃(𝑖, 𝑖) = 𝑀𝐴𝑋 {

𝐷𝑃(𝑖−1,𝑖−1) + 𝑇(𝑀𝑎𝑡𝑐ℎ,𝑀𝑖𝑠𝑠−𝑀𝑎𝑡𝑐ℎ)

𝐷𝑃(𝑖−1,𝑖) + 𝑇(𝐺𝐴𝑃)

𝐷𝑃(𝑖,𝑖−1) + 𝑇(𝐺𝐴𝑃)

0

    (1) 

where DP denotes the similarity matrix, T(Match, Miss-Match) is 

the assigned score for when a match or a mismatch occurs 

(usually +2 for a match and a -1 for a mismatch [11]), and 

T(Gap) is the gap penalty. 

As shown, (1) accounts for all contributions 

neighboring cells (i, i) on the main diagonal and is thus 

‘exact’. However, since the adjacent cells, i.e., west, north, 

and north-west, have approximate values (see immediately 

following sub-section), the output of this equation would 

likely be an erroneous value. 

3.1.2. Other cells 

As implied above, the elements that are not placed on 

the main diagonal use only two of the three adjacent cells. 

Note that this approximation is a property of the underlying 

algorithm and not a specific hardware-related design choice. 

For the main diagonal of the cells below, we use the values 

of the west and the north-west cells as given by (2). 

 
 

(a) 

 
(b) 

Fig. 1: The PE assignment in (a) 1D-Systolic array-based 

architecture and (b) the proposed design. 

 
Fig. 2: Timing diagram of the proposed 2-dimensional 

architecture. The editing phase might or might not be 

required depending on the value of the Errorflag signal. 

 

𝐷𝑃(𝑖, 𝑗) = 𝑀𝐴𝑋 {

𝐷𝑃(𝑖−1,𝑗−1) + 𝑇(𝑀𝑎𝑡𝑐ℎ,𝑀𝑖𝑠𝑠−𝑀𝑎𝑡𝑐ℎ)

𝐷𝑃(𝑖,𝑗−1) + 𝑇(𝐺𝐴𝑃)

0

    (2) 

𝐷𝑃(𝑖, 𝑗) = 𝑀𝐴𝑋 {

𝐷𝑃(𝑖−1,𝑗−1) + 𝑇(𝑀𝑎𝑡𝑐ℎ,𝑀𝑖𝑠𝑠−𝑀𝑎𝑡𝑐ℎ)

𝐷𝑃(𝑖,𝑗−1) + 𝑇(𝐺𝐴𝑃)

0

 

For the cells on the top of the main diagonal, on the 

other hand, we use the values of the north and the north-west 

cells as given by: 

𝐷𝑃(𝑖, 𝑗) = 𝑀𝐴𝑋 {

𝐷𝑃(𝑖−1,𝑗−1) + 𝑇(𝑀𝑎𝑡𝑐ℎ,𝑀𝑖𝑠𝑠−𝑀𝑎𝑡𝑐ℎ)

𝐷𝑃(𝑖−1,𝑗) + 𝑇(𝐺𝐴𝑃)

0

    (3) 

Fig. 3 provides a graphical description of the three 

above-mentioned equations to make the proposed 

architecture clearer. As shown in Fig. 3, the cells on the 

main diagonal ((1, 1) and (2, 2)) use the values of the three 
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adjacent cells. The cell below the main diagonal, i.e. (2, 1) 

uses the values of the west and the north-west adjacent cells. 

Finally, the cell on the top of the main diagonal, i.e., (1, 2) 

uses the values of the north and the north-west adjacent 

cells. Note that according to (1), (2), and (3), two types of 

PEs are required in the proposed architecture. The horizontal 

PEs are used to calculate the values of the cells on the same 

row, from the first column to the column on which the cell 

on the main diagonal is located, and the vertical PEs 

calculate the values of the cells on the same column, from 

the first row to the row just below the row on which the cell 

on the main diagonal is located. Note that the horizontal PEs 

are distinct from the vertical PEs as they use the values of 

different neighbors to calculate their outputs during the first 

phase. Unlike the existing architectures, including 1D-

systolic arrays, the distinction between the horizontal and 

vertical PEs in this work allows us to perform the 

calculations independently and in parallel. Thus, the 

proposed architecture is notably faster than the existing 

designs, as will be discussed later in the simulation results 

section, Section IV. With the given approximations in (1), 

(2), and (3), cells would most likely have erroneous values. 

Thus, a second phase is required i.e., the editing phase to 

compensate for the introduced errors. 

3.2. Editing Phase 

Similar to the calculation phase, the editing phase is 

also done differently for the cells on the main diagonal and 

the other cells. 

3.2.1. Cells on the main diagonal 

For the cells on the main diagonal, our calculation phase 

was performed based on (1). Consider Fig. 3 where a subset 

of the similarity matrix is shown. The cells (0, 0), (1, 1), and 

(2, 2) are explained here, and calculations for other cells on 

the main diagonal would be just like the cell (2, 2).  

Cell (0, 0): The value of this cell is calculated according 

to (1) by using PE11, see Fig. 3, during the calculation 

phase. Since (1) is the exact equation and the three cells that 

are used to calculate the value of the cell (0, 0) have all 

exact values (i.e. the initial values), there is no calculation 

error. Hence, the editing phase is not performed for the cell 

(0,0). 

Cell (1, 1): The value of the cell (1, 1) is calculated 

based on the values of the cells (1, 0) and (0, 1), which are 

computed according to (2) and (3), respectively, and the 

value of the cell (0, 0). There is no error in the value of the 

cell (0, 0) and, therefore, to edit the value of the cell (1,1), 

we only need to edit the values of the cells (1,0) and (0,1).  

The value of the cell (1, 0) is initially computed by 

ignoring the value of the cell (0, 0). Hence, the first step in 

editing this cell would be figuring out if (0, 0) was effective 

in the value of the cell (1, 0), which can be checked with the 

following condition: DP(0,0) + T(gap) > DP(1,0). If this 

condition is met, it means that an error has occurred in the 

calculation of the value of the cell (1, 0) and, therefore, the 

Errorflag of PE(12) is set. Similarly, the cell (0, 1) should be 

checked for possible errors that happen in some seldom 

cases. Finally, the value of the cell (1, 1) is recomputed 

based on (1) to avoid any possible error if at least one of the 

two Errorflag signals for the two corresponding PEs is set. 

 
Fig. 3: The graphical description of the PEs’ functionality 

during the calculation phase. 

Cell (2, 2): The value of the cell (2, 2) is calculated 

based on the values of the cells (1, 1), (2, 1), and (1, 2). The 

details for this error correction are provided in Algorithm 1. 

The editing phase for the cell (1, 1) is already explained and 

the cells (2, 1) and (1, 2) have similar error editing 

calculations. Thus, only the calculation for the cell (2, 1) is 

explained here. 

Cell (2, 1) might have an erroneous value caused by the 

values of the cells (1, 0) and (2, 0) and more importantly, by  

 
Algorithm 1: Editing phase for the cells that are located on 

the main diagonal. 
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(a) 

(b) 

Fig. 4: The data path architecture of the proposed method: (a) horizontal PE and (b) vertical PE. 

ignoring the value of the cell (1,1). Error editing for the cell 

(1, 0) is already explained, so the cell (2, 0) and the effects 

of ignoring the value of the cell (1, 1) need to be elaborated. 

According to Algorithm 1, the value of the cell (2, 0) is 

corrected by considering the gap penalty at the cell (1, 0) 

and the effect of ignoring the cell (1, 1) is addressed by 

reflecting the gap penalty at the cell (1, 1). Note that the 

entire calculation and edition phase are completed within 

three clock cycles and, therefore, a 3x3 subset as shown in 

Fig. 3 is large enough to explain the entire calculation. In 

fact, for larger matrices, the errors for the cells that are 

located further away will be completely edited within the 

three clock cycles and, therefore, we do not need to consider 

them in our calculations. 

3.2.2. Other cells 

Editing the values of the cells that are not located on the 

main diagonal is simpler than that of those on the main 

diagonal and can be easily concluded from Algorithm 1. 

3.3. Hardware Implementation 

This section describes the hardware implementation of 

the proposed horizontal and vertical PEs and describes how 

they calculate the roughly approximated values for each cell 

and also the error editing phase. Fig. 5 shows a simplified  

block diagram of the proposed architecture. As shown in 

this figure, the control unit manages the control signals on 

the data path. Additionally, the query and reference symbols 

should be stored in shared memory and the score arrays will 

be sent to the local memory for the editing and calculation 

phases. 
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Fig. 5: The block diagram of the generic design. 

Other than the control unit, an important part of the 

hardware implementation is the design of PEs. As 

mentioned earlier, two types of PEs are used in the proposed 

architecture i.e., vertical PEs and horizontal PEs. The 

detailed hardware implementation of these PEs is described 

below. 

3 . 3 . 1 .  Vertical PE 

A vertical PE does not compute the cells on the main 

diagonal and, therefore, implements simpler equations. 

Hence, they are less complex and, of course, have faster 

designs than the horizontal PEs. Fig. 4b shows the 

functionality of the proposed architecture 

3.3.2. Horizontal PE 

Unlike vertical PEs, horizontal PEs are further used to 

compute the cells on the main diagonal. Hence, they are 

more complex and, consequently, have slower designs. The 

hardware 

4. SIMULATION RESULTS 

This section is further divided into two sections. The 

first section provides the FPGA and ASIC implementation 

results of the proposed architecture, while the second section 

analyzes the performance of the proposed architecture in 

terms of the total execution time. 

4.1. Synthesis Results 

The proposed architecture is implemented in VHDL 

hardware description language and synthesized on (1) 

FPGA and (2) using an ASIC implementation. 

Table 2 reports the resource utilization of the horizontal 

and vertical PEs when implemented on Virtex-7 and 

Spartan-7 FPGAs. Moreover, both designs are implemented 

by using Synopsys Design Compiler for 180-nm CMOS 

technology, and the results are provided in Table 3. 

Our simulation results, specifically the results in Table 

2, show that the proposed architecture can operate at 360Mhz 

on Virtex 6. Note that this is the worst-case scenario, i.e., all 

of the cells have erroneous values and the error editing 

phase needs to be performed for all of them. 

4.2. Performance 

In this section, we analyze the worst-case execution 

time of the proposed architecture. Given that each PE 

requires three clock cycles to accomplish its computations, 

the total execution time τtotal for an (N + 1)x(N + 1) similarity 

matrix (a seed with the length of N ) can be calculated as: 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑁 × 3 ×
1

𝑐𝑙𝑘ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
                                             (4) 

where clkhorizontal is the maximum clock frequency of the 

horizontal PEs, i.e., the slowest part of the proposed 

architecture. Note that in an (N + 1) x (N + 1) similarity 

matrix with a seed length of N, the first row and the first 

column of the matrix are initial values, which are calculated 

by the SMEM kernel. We need three clock ticks for each PE 

in the worst case, and all of the matrix elements will be 

calculated in N cycles of the calculation, which is shown in 

Fig. 1. 

Compared to the state-of-the-art 1D-systolic array-

based architecture that computes an N x N matrix in 2N-1 

clock cycles, the proposed architecture is faster as it only 

requires N-1 clock cycles. We compare our architecture 

performance with the original algorithm in terms of 

execution time on Intel(R) Core(TM) i7-4702 MQ CPU. 

The BWA-MEM 0.7.11 is used and run over the free NCBI 

dataset [23]. Since we are interested in comparing the 

execution time of the seed extension kernel, we only used 

the output of the SMEM kernel as the input to the proposed 

design. Note that the speedup in Table 4 is the average 

speedup over 1000 randomly selected inputs from the 

dataset. The comparison results are provided in Table 4 and 

Fig. 6. Fig. 6a provides a comparison of the execution time 

of our proposed method and 1-D systolic architecture based 

on different seed lengths. As indicated from this figure, our 

execution time decreases asymptotically with the growth of 

seed length, and our acceleration pace is fixed for longer 

seed lengths. This speed-up ratio is illustrated in Fig. 6b. 

Area overhead of both 1D-Systolic arrays and our 

approach is enlightened herein. Based on [11], 

implementation results considering a 131*131 array on 

Xilinx Virtex-6 LX760 FPGA show 4% of total FGPA 

resources, while our approach utilizes almost 13.5% of 

Xilinx Virtex-6 LX760 FPGA resources that is about 3.3x 

more area overhead than the 1D-systolic. This increase in 

area overhead is due to the addition of the editing phase, 

which lets us for the first time eliminate data dependency in 

calculating the Smith-Waterman matrix in a 2D manner 

(Fig. 1). However, the area is not usually a bottleneck in the 

implementation of the BWA-MEM algorithm on FPGA, and 

the execution time is a more important concern. The main 

contribution of our work lies in the fact that we have 

eliminated the data dependency to devise a new 2D 

approach  to  speeding  up  the  seed  extension  kernel.  It  is 

 

Table 2: Result of FPGA implementation. 

FPGA 
PE LUT FF IO BUFG Freq. 

(MHz) Usage Utilization Available Usage Utilization Available Usage Utilization Usage Utilization 

xc7s50csga324-2 Vertical 89 0.2% 32600 18 0.03% 65200 72 32% 1 3.13% 189 

xc7s50csga324-2 Horizontal 205 0.7% 32600 39 0.05% 65200 123 57.7% 1 3.13% 185 

xc7v58tffg1157-3 Vertical 89 0.02% 364200 18 0.01% 728400 72 11.8% 1 3.13% 363 

xc7v58tffg1157-3 Horizontal 205 0.05% 364200 39 0.01% 728400 123 20.4% 1 3.13% 360 
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Table 3: The ASIC design of the proposed architecture. 

PE Leakage Type Vertical Horizontal 

Critical path delay (ns) 3.2 3.22 

Cell area (nm2) 10245.31 21584.18 

Number of nets 446 830 

Levels of logic 14 18 

Dynamic power (nW) 2.23 4.4 

Power (nW) 366.7 747.3 
 

Table 4: Execution time comparison of CPU vs. the 

proposed architecture (us). 

Matrix 

dimension 

i7-4702 Proposed 

architecture 

FPGA 

Utilization 

Speedup 

10 × 10 8.956 0.0366 0.95% 245 × 
25 × 25 43.178 0.091 2.45% 474 × 
50 × 50 105.24 0.183 4.95% 576 × 

100 × 100 198.35 0.366 9.95% 542 × 
131 × 131 244.21 0.48 13.5% 509 × 

] 

 

 
(a) 

 
(b) 

Fig. 6: The proposed architecture with operating Freq. 360 

MHz vs. 1-D systolic arrays with operating Freq. 380 MHz 

(on the same platform Xilinx Vertix 6), (a) Execution time, 

and (b) Speedup. 

obvious that our proposed architecture can benefit from 

more parallelism for computing different seeds in parallel, 

and we will not face the lack of FPGA resources. 

5. DISCUSSION 

The proposed architecture can be implemented on a 

Virtex 6 FPGA device with a typical 131 x 131 matrix 

dimension and a minimum of 19 base-pairs seed length from 

a read containing 150 base-pairs, while using less than 15% 

of the FPGA available resources. This indicates that the 

proposed architecture can benefit from more parallelism for 

computing different seeds in parallel. Our simulation results 

show up to 570x and 1.4x acceleration and speedup in 

comparison to software execution and the 1D-systolic 

arrays, respectively in case of the 131 × 131 matrix 

dimension on Virtex 6 FPGA. 

6. CONCLUSION 

We have proposed a newly developed algorithm of the 

seed extension kernel for the well-known BWA-MEM 

sequence alignment algorithm. This novel 2-dimensional, 

high-throughput seed extension kernel is implemented on 

FPGA. We achieved up to 570x speedup with 360MHz 

operating frequency in comparison to the Intel(R) Core(TM) 

i7-4702 MQ CPU. Also, we achieved up to 1.4x speedup in 

comparison to the 1D-systolic arrays implemented on the 

same hardware as our architecture. Our simulation results 

show that the proposed architecture can work with up to 312 

MHz frequency in Synopsys Design-Compiler for 180-nm 

CMOS technology. By introducing the calculation and error 

editing phase, we notably reduced the number of required 

clock cycles for filling an N × N similarity matrix. In fact, 

the state-of-art 1D-systolic array-based architectures fill the 

NXN similarity matrix in 2N-1 cycles, while our proposed 

architecture only takes N-1 cycles to fill the same matrix. 
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