
J. Appl. Res. Electr. Eng., Vol. 1, No. 2, pp. 203-210, 2022 DOI: 10.22055/jaree.2021.36116.1015

Shahid Chamran

University of Ahvaz

Iranian Association of

Electrical and Electronics

Engineers

Journal of Applied Research in Electrical Engineering

E-ISSN: 2783-2864

P-ISSN: 2717-414X

Homepage:https://jaree.scu.ac.ir/

Research Article

203

Novel 2-D BWA-MEM FPGA Accelerator for Short-Read Mapping of the Whole

Human Genome

Mahdi Taheri , and Ali Mahani*

Reliable and Smart Systems Lab (RSS), Shahid Bahonar University of Kerman, Kerman 7616913439, Iran

*Corresponding Author: amahani@uk.ac.ir

Abstract: The mapping of DNA subsequences to a known reference genome, referred to as “short-read mapping”, is

essential for next-generation sequencing. Hundreds of millions of short reads need to be aligned to a tremendously long

reference sequence, making short-read mapping very time-consuming. Day by day progress in Next-Generation

Sequencing (NGS) is enabling the generation of DNA sequence data at ever faster rates and lower cost, which means a

dramatic increase in the amounts of data being sequenced. Nowadays, sequencing of nearly 20 billion reads (short DNA

fragments) costs about 1000 dollars per human genome, and sequencers can generate 6 Terabases of data in less than

two days. This article considers the seed extension kernel of the Burrows-Wheeler Alignment (BWA) genomic mapping

algorithm for accelerating with FPGA devices. We propose an FPGA-based accelerated implementation for the seed

extension kernel. The Smith-Waterman algorithm is used during the seed extension to find the optimum alignment

between two sequences. The state-of-the-art architectures use 1D-systolic arrays to fill a similarity matrix. Based on the

best score out of all match combinations, mismatches and gaps are computed. The cells on the same anti-diagonal are

calculated in parallel in these architectures. We propose a novel 2-dimensional architecture. Our new modified

algorithm is based on two editing and calculating phases. In each step of the calculation, some errors may occur in

which all the cells on the same row and same column are computed in parallel, which significantly speeds up the

process. Needless to say, these probable errors will be omitted before the next step of the calculation begins. Our

simulation results show that the proposed architecture can work with up to 312 MHz frequency in Synopsys Design-

Compiler for 180-nm CMOS technology and be up to 570x and 1.4x faster than the software execution and 1D-systolic

arrays, respectively.

Keywords: Bioinformatics, FPGA, smith-waterman.

Article history

Received 20 December 2020; Revised 27 March 2021; Accepted 15 August 2021; Published online 11 April 2022.

© 2022 Published by Shahid Chamran University of Ahvaz & Iranian Association of Electrical and Electronics Engineers (IAEEE)
How to cite this article

M. Taheri, and A. Mahani, "Novel 2-D BWA-MEM FPGA accelerator for short-read mapping of the whole human

genome," J. Appl. Res. Electr. Eng., vol. 1, no. 2, pp. 203-210, 2022. DOI: 10.22055/jaree.2021.36116.1015

1. INTRODUCTION

As a result of advances in next generation sequencing

(NGS) techniques, the amount of genomic data is

accumulating extremely rapidly [1]. Some projects will

grow on an order of 1018 bytes per year by the next decade

[2, 3]. Naturally, data of such scales impose a significant

processing load in many aspects of bioinformatics. The new

NGS techniques reduce the cost of generating a whole

human genome, which, in return, further increases the

amount of data [4]. Typically, NGS techniques produce

millions of short reads, usually less than 200 bases in length

[5]. In many cases, the short reads must be aligned to a

reference sequence to obtain useful information about the

sequenced molecule [6]. There are several different

alignment algorithms to choose from, among which dynamic

programming solutions, such as Bowtie [7], Burrows-

Wheeler Alignment (BWA) [8], and SOAP2 [9], are shown

to provide a better trade-off between the accuracy and speed.

The most well-known, the BWA-MEM algorithm, which is

popular for its high accuracy, is considered in this article as

the target for FPGA acceleration.

The BWA-MEM algorithm, introduced in [10],

manages superior alignment to a number of its

contemporaries, but at the cost of a higher computational

load. The three main operations in the BWA- MEM

 Check for

 updates

https://dx.doi.org/10.22055/jaree.2021.36116.1015
https://jaree.scu.ac.ir/
mailto:amahani@uk.ac.ir
https://doi.org/10.22055/jaree.2021.36116.1015
https://www.orcid.org/0000-0001-5405-992X
https://www.orcid.org/0000-0003-4916-202X
https://dx.doi.org/10.22055/jaree.2021.38432.1035
https://dx.doi.org/10.22055/jaree.2021.38432.1035
https://doi.org/10.22055/jaree.2021.36116.1015
https://dx.doi.org/10.22055/jaree.2021.36116.1015
https://dx.doi.org/10.22055/jaree.2021.36116.1015

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 2, pp. 203-210, 2022

204

algorithm are (1) generating the super-maximal exact

matches (SMEMs), (2) extending the seeds, and (3)

generating the final outputs. The three kernels that perform

these operations are listed in Table 1 along with their main

bottlenecks [11]. As shown in Table 1, the step with the

most severe computational bound is the seed extension

kernel, which accounts for almost 33% of the execution

time. A similarity matrix is dynamically filled during the

seed extension operation. To compute the value of the cell

(i, j) in the similarity matrix, the values of the following

cells are required: (1) the west cell at (i, j-1), (2) the north

cell at (i-1, j), and (3) the north-west cell at (i-1, j-1). State-

of-the-art architectures aimed at accelerating this problem use

1D-systolic arrays to fill the similarity matrix [8].

Specifically, for such computations, 1D-systolic arrays use a

1-dimensional array of n processing elements (PEs) where n

is the number of cells on the main diagonal [11]. Note that

increasing the number of PEs in such an architecture does

not reduce execution time.

This article proposes a novel FPGA-based architecture to

speed up the process of filling the similarity matrix, the

bottleneck of the seed extension kernel. To the best of our

knowledge, this is the first 2-dimensional architecture that,

unlike 1D-systolic arrays, achieves higher throughput by

increasing the number of PEs. The proposed architecture can

compute the cells on the same row and on the same column

in parallel as opposed to existing architectures that can only

compute the cells on the same anti-diagonal in parallel.

Novel PEs are proposed that compute cells in two phases:

(1) the calculation phase that roughly approximates the cells

and (2) the error compensation phase that fixes the

potentially introduced errors during the first phase. The two

phases are described in detail in Section 3.

The rest of the paper is organized as follows. Section 2

provides general information on the BWA-MEM algorithm

and related work. The mathematical description of the

proposed architecture, the PE designs, and the final

hardware implementation are discussed in Section 3. Section

4 evaluates the proposed architecture. Finally, Section 5

concludes the article.

2. BACKGROUND

This section describes the BWA-MEM algorithm and

related previous works dedicated to its acceleration. DNA

sequences are chains comprised of the four nucleotide

monomers (A, C, G, T). Alternative permutations of these

nucleotides typically encode alternate biochemical functions

and products within the DNA. A 2-bit representation is used

in our implementation for each of these four nucleotides.

Although even simple organisms possess contiguous DNA

exceeding a million nucleotides in length, DNA

measurements (i.e. the products of sequencing machines)

rarely produce sequences this long due to a combination of

technical limits at present. In fact, it is common for leading

sequencers to produce outputs, ‘reads’, on an order of 100

nucleotides in length, obtained from unknown regions of the

native DNA originally fed into the sequencer.

As a result, pairwise local alignment, searching for

similarities between a new read (the query) and anticipated

DNA pattern (reference genome), is one of the first steps in

bioinformatics algorithms [12]. The main workload of the

Table 1: Profiling the BWA-MEM algorithm [11].

Kernel Execution time (%) Bound

SMEM generation 56% Memory

Seed extension 32% Computational

Output generation 9% Memory

Other 3% I/O

BWA-MEM algorithm is aligning millions of short DNA

reads against a reference genome (usually the human

genome) [13]. The authors introduced a new low-power and

high-speed bioinformatic engine, a hardware-accelerated

base caller, for mobile sequencing applications [14]. There

are also several other works providing a generalized

methodology and insights for efficient implementation of

the DNA sequencing algorithms [15–19].

Several techniques have been proposed to accelerate the

Smith-Waterman inexact alignment algorithm. However, the

seed extension step of this algorithm makes it inherently a

slow design. Authors have provided a new 2-D technique

regarding the Smith-Waterman inexact alignment algorithm

in which they have used fix numbers for the match,

mismatch, and gap penalty [20]. An FPNI structure is

proposed in [21] that uses race logic and CMOS-gate

representation and leads to compromising results in the case

of flexible input read length and omitting unnecessary

latency. This is a new re-configuration sequencing method

for difference of read lengths that may take place as input

data in which crucial drawbacks impact DNA sequencing

methods. A hardware acceleration of the BWA-MEM

genomics short read mapping for longer read length is

implemented in [22]. This design is based on an architecture

previously proposed in [11] where an FPGA-based 1D-

systolic array is used to accelerate the BWA-MEM

genomics mapping algorithm. The main idea is to insert

some exit points between the PEs of the 1D-systolic array to

avoid unnecessary calculations for shorter reads. By doing

so, shorter reads do not have to go through all of the PEs and

can exit the array once they get to the first exit point.

3. PROPOSED ARCHITECTURE

This section describes the methodology proposed for

filling the similarity matrix and introduces the new

architecture for implementing the seed extension kernel of

the BWA-MEM algorithm.

Unlike the 1D-systolic array-based architectures, we

propose a 2-dimensional architecture in which two different

strings of PEs are assigned to all of the cells in the same rows

and on the same columns. By doing so, the Smith-Waterman

algorithm can be executed faster compared to the 1D-

systolic array-based architectures. Although the proposed

architecture is more resource-hungry than 1D-systolic arrays,

it runs significantly faster. Note that the 1D-systolic arrays

cannot operate faster even with more PEs. Each PE

computes the values of its assigned cells (fills the similarity

matrix) in two phases that, in total, take three clock cycles.

During the first phase, the calculation phase, the value of

each cell is roughly approximated by the corresponding PEs.

Then, the Errorflag signal is asserted and the second phase,

i.e. the error editing phase, starts. The main advantage of our

structure is that the rows and columns calculation of the

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 2, pp. 203-210, 2022

205

similarity matrix are performed independently. In some rare

cases, the parallel calculations lead to approximation in the

obtained scores. So, the editing phase (second phase) is

needed to correct the approximated scores of the first phase.

Fig. 1 shows how PEs are assigned to cells in the

similarity matrix in the proposed method and in the

previously reported 1D-systolic array-based architectures.

The cells with the same numbers in Fig. 1a are computed

simultaneously and the cells with the same colors in Fig. 1b

can be computed in parallel in the proposed architecture. It

can be clearly seen in Fig. 1 that the similarity matrix can be

filled in fewer steps by using the proposed architecture (three

versus five).

Note that the 1D-systolic array needs only three PEs to

fill the similarity matrix, while the proposed architecture

uses five PEs. However, the main advantage of the proposed

architecture is that more PEs are processed in parallel,

thereby speeding up the process. Taking advantage of our

two-phase architecture lets us better exploit the parallelism

available in the process. The timing diagram of the proposed

architecture is given in Fig. 2. As shown in this figure, when

the first phase – the calculation phase – is completed, the PE

may or may not perform the second phase. The error signal

Errorflag is updated after the end of the calculation phase

and, if it is set, then the 2nd phase (the editing phase) needs

to be performed.

The two phases of the proposed architecture and the

details of its hardware implementation are thoroughly

explained below.

3.1. Calculation Phase

During the calculation phase, an approximation of each

cell is calculated. Depending on the position of the cell in

the similarity matrix, this approximation follows different

rules, as described below.

3.1.1. Cells on the main diagonal

For the cells on the main diagonal, we use the exact PE

functionality, as given by:

𝐷𝑃(𝑖, 𝑖) = 𝑀𝐴𝑋 {

𝐷𝑃(𝑖−1,𝑖−1) + 𝑇(𝑀𝑎𝑡𝑐ℎ,𝑀𝑖𝑠𝑠−𝑀𝑎𝑡𝑐ℎ)

𝐷𝑃(𝑖−1,𝑖) + 𝑇(𝐺𝐴𝑃)

𝐷𝑃(𝑖,𝑖−1) + 𝑇(𝐺𝐴𝑃)

0

 (1)

where DP denotes the similarity matrix, T(Match, Miss-Match) is

the assigned score for when a match or a mismatch occurs

(usually +2 for a match and a -1 for a mismatch [11]), and

T(Gap) is the gap penalty.

As shown, (1) accounts for all contributions

neighboring cells (i, i) on the main diagonal and is thus

‘exact’. However, since the adjacent cells, i.e., west, north,

and north-west, have approximate values (see immediately

following sub-section), the output of this equation would

likely be an erroneous value.

3.1.2. Other cells

As implied above, the elements that are not placed on

the main diagonal use only two of the three adjacent cells.

Note that this approximation is a property of the underlying

algorithm and not a specific hardware-related design choice.

For the main diagonal of the cells below, we use the values

of the west and the north-west cells as given by (2).

(a)

(b)

Fig. 1: The PE assignment in (a) 1D-Systolic array-based

architecture and (b) the proposed design.

Fig. 2: Timing diagram of the proposed 2-dimensional

architecture. The editing phase might or might not be

required depending on the value of the Errorflag signal.

𝐷𝑃(𝑖, 𝑗) = 𝑀𝐴𝑋 {

𝐷𝑃(𝑖−1,𝑗−1) + 𝑇(𝑀𝑎𝑡𝑐ℎ,𝑀𝑖𝑠𝑠−𝑀𝑎𝑡𝑐ℎ)

𝐷𝑃(𝑖,𝑗−1) + 𝑇(𝐺𝐴𝑃)

0

 (2)

𝐷𝑃(𝑖, 𝑗) = 𝑀𝐴𝑋 {

𝐷𝑃(𝑖−1,𝑗−1) + 𝑇(𝑀𝑎𝑡𝑐ℎ,𝑀𝑖𝑠𝑠−𝑀𝑎𝑡𝑐ℎ)

𝐷𝑃(𝑖,𝑗−1) + 𝑇(𝐺𝐴𝑃)

0

For the cells on the top of the main diagonal, on the

other hand, we use the values of the north and the north-west

cells as given by:

𝐷𝑃(𝑖, 𝑗) = 𝑀𝐴𝑋 {

𝐷𝑃(𝑖−1,𝑗−1) + 𝑇(𝑀𝑎𝑡𝑐ℎ,𝑀𝑖𝑠𝑠−𝑀𝑎𝑡𝑐ℎ)

𝐷𝑃(𝑖−1,𝑗) + 𝑇(𝐺𝐴𝑃)

0

 (3)

Fig. 3 provides a graphical description of the three

above-mentioned equations to make the proposed

architecture clearer. As shown in Fig. 3, the cells on the

main diagonal ((1, 1) and (2, 2)) use the values of the three

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 2, pp. 203-210, 2022

206

adjacent cells. The cell below the main diagonal, i.e. (2, 1)

uses the values of the west and the north-west adjacent cells.

Finally, the cell on the top of the main diagonal, i.e., (1, 2)

uses the values of the north and the north-west adjacent

cells. Note that according to (1), (2), and (3), two types of

PEs are required in the proposed architecture. The horizontal

PEs are used to calculate the values of the cells on the same

row, from the first column to the column on which the cell

on the main diagonal is located, and the vertical PEs

calculate the values of the cells on the same column, from

the first row to the row just below the row on which the cell

on the main diagonal is located. Note that the horizontal PEs

are distinct from the vertical PEs as they use the values of

different neighbors to calculate their outputs during the first

phase. Unlike the existing architectures, including 1D-

systolic arrays, the distinction between the horizontal and

vertical PEs in this work allows us to perform the

calculations independently and in parallel. Thus, the

proposed architecture is notably faster than the existing

designs, as will be discussed later in the simulation results

section, Section IV. With the given approximations in (1),

(2), and (3), cells would most likely have erroneous values.

Thus, a second phase is required i.e., the editing phase to

compensate for the introduced errors.

3.2. Editing Phase

Similar to the calculation phase, the editing phase is

also done differently for the cells on the main diagonal and

the other cells.

3.2.1. Cells on the main diagonal

For the cells on the main diagonal, our calculation phase

was performed based on (1). Consider Fig. 3 where a subset

of the similarity matrix is shown. The cells (0, 0), (1, 1), and

(2, 2) are explained here, and calculations for other cells on

the main diagonal would be just like the cell (2, 2).

Cell (0, 0): The value of this cell is calculated according

to (1) by using PE11, see Fig. 3, during the calculation

phase. Since (1) is the exact equation and the three cells that

are used to calculate the value of the cell (0, 0) have all

exact values (i.e. the initial values), there is no calculation

error. Hence, the editing phase is not performed for the cell

(0,0).

Cell (1, 1): The value of the cell (1, 1) is calculated

based on the values of the cells (1, 0) and (0, 1), which are

computed according to (2) and (3), respectively, and the

value of the cell (0, 0). There is no error in the value of the

cell (0, 0) and, therefore, to edit the value of the cell (1,1),

we only need to edit the values of the cells (1,0) and (0,1).

The value of the cell (1, 0) is initially computed by

ignoring the value of the cell (0, 0). Hence, the first step in

editing this cell would be figuring out if (0, 0) was effective

in the value of the cell (1, 0), which can be checked with the

following condition: DP(0,0) + T(gap) > DP(1,0). If this

condition is met, it means that an error has occurred in the

calculation of the value of the cell (1, 0) and, therefore, the

Errorflag of PE(12) is set. Similarly, the cell (0, 1) should be

checked for possible errors that happen in some seldom

cases. Finally, the value of the cell (1, 1) is recomputed

based on (1) to avoid any possible error if at least one of the

two Errorflag signals for the two corresponding PEs is set.

Fig. 3: The graphical description of the PEs’ functionality

during the calculation phase.

Cell (2, 2): The value of the cell (2, 2) is calculated

based on the values of the cells (1, 1), (2, 1), and (1, 2). The

details for this error correction are provided in Algorithm 1.

The editing phase for the cell (1, 1) is already explained and

the cells (2, 1) and (1, 2) have similar error editing

calculations. Thus, only the calculation for the cell (2, 1) is

explained here.

Cell (2, 1) might have an erroneous value caused by the

values of the cells (1, 0) and (2, 0) and more importantly, by

Algorithm 1: Editing phase for the cells that are located on

the main diagonal.

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 2, pp. 203-210, 2022

207

(a)

(b)

Fig. 4: The data path architecture of the proposed method: (a) horizontal PE and (b) vertical PE.

ignoring the value of the cell (1,1). Error editing for the cell

(1, 0) is already explained, so the cell (2, 0) and the effects

of ignoring the value of the cell (1, 1) need to be elaborated.

According to Algorithm 1, the value of the cell (2, 0) is

corrected by considering the gap penalty at the cell (1, 0)

and the effect of ignoring the cell (1, 1) is addressed by

reflecting the gap penalty at the cell (1, 1). Note that the

entire calculation and edition phase are completed within

three clock cycles and, therefore, a 3x3 subset as shown in

Fig. 3 is large enough to explain the entire calculation. In

fact, for larger matrices, the errors for the cells that are

located further away will be completely edited within the

three clock cycles and, therefore, we do not need to consider

them in our calculations.

3.2.2. Other cells

Editing the values of the cells that are not located on the

main diagonal is simpler than that of those on the main

diagonal and can be easily concluded from Algorithm 1.

3.3. Hardware Implementation

This section describes the hardware implementation of

the proposed horizontal and vertical PEs and describes how

they calculate the roughly approximated values for each cell

and also the error editing phase. Fig. 5 shows a simplified

block diagram of the proposed architecture. As shown in

this figure, the control unit manages the control signals on

the data path. Additionally, the query and reference symbols

should be stored in shared memory and the score arrays will

be sent to the local memory for the editing and calculation

phases.

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 2, pp. 203-210, 2022

208

Fig. 5: The block diagram of the generic design.

Other than the control unit, an important part of the

hardware implementation is the design of PEs. As

mentioned earlier, two types of PEs are used in the proposed

architecture i.e., vertical PEs and horizontal PEs. The

detailed hardware implementation of these PEs is described

below.

3 . 3 . 1 . Vertical PE

A vertical PE does not compute the cells on the main

diagonal and, therefore, implements simpler equations.

Hence, they are less complex and, of course, have faster

designs than the horizontal PEs. Fig. 4b shows the

functionality of the proposed architecture

3.3.2. Horizontal PE

Unlike vertical PEs, horizontal PEs are further used to

compute the cells on the main diagonal. Hence, they are

more complex and, consequently, have slower designs. The

hardware

4. SIMULATION RESULTS

This section is further divided into two sections. The

first section provides the FPGA and ASIC implementation

results of the proposed architecture, while the second section

analyzes the performance of the proposed architecture in

terms of the total execution time.

4.1. Synthesis Results

The proposed architecture is implemented in VHDL

hardware description language and synthesized on (1)

FPGA and (2) using an ASIC implementation.

Table 2 reports the resource utilization of the horizontal

and vertical PEs when implemented on Virtex-7 and

Spartan-7 FPGAs. Moreover, both designs are implemented

by using Synopsys Design Compiler for 180-nm CMOS

technology, and the results are provided in Table 3.

Our simulation results, specifically the results in Table

2, show that the proposed architecture can operate at 360Mhz

on Virtex 6. Note that this is the worst-case scenario, i.e., all

of the cells have erroneous values and the error editing

phase needs to be performed for all of them.

4.2. Performance

In this section, we analyze the worst-case execution

time of the proposed architecture. Given that each PE

requires three clock cycles to accomplish its computations,

the total execution time τtotal for an (N + 1)x(N + 1) similarity

matrix (a seed with the length of N) can be calculated as:

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑁 × 3 ×
1

𝑐𝑙𝑘ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
 (4)

where clkhorizontal is the maximum clock frequency of the

horizontal PEs, i.e., the slowest part of the proposed

architecture. Note that in an (N + 1) x (N + 1) similarity

matrix with a seed length of N, the first row and the first

column of the matrix are initial values, which are calculated

by the SMEM kernel. We need three clock ticks for each PE

in the worst case, and all of the matrix elements will be

calculated in N cycles of the calculation, which is shown in

Fig. 1.

Compared to the state-of-the-art 1D-systolic array-

based architecture that computes an N x N matrix in 2N-1

clock cycles, the proposed architecture is faster as it only

requires N-1 clock cycles. We compare our architecture

performance with the original algorithm in terms of

execution time on Intel(R) Core(TM) i7-4702 MQ CPU.

The BWA-MEM 0.7.11 is used and run over the free NCBI

dataset [23]. Since we are interested in comparing the

execution time of the seed extension kernel, we only used

the output of the SMEM kernel as the input to the proposed

design. Note that the speedup in Table 4 is the average

speedup over 1000 randomly selected inputs from the

dataset. The comparison results are provided in Table 4 and

Fig. 6. Fig. 6a provides a comparison of the execution time

of our proposed method and 1-D systolic architecture based

on different seed lengths. As indicated from this figure, our

execution time decreases asymptotically with the growth of

seed length, and our acceleration pace is fixed for longer

seed lengths. This speed-up ratio is illustrated in Fig. 6b.

Area overhead of both 1D-Systolic arrays and our

approach is enlightened herein. Based on [11],

implementation results considering a 131*131 array on

Xilinx Virtex-6 LX760 FPGA show 4% of total FGPA

resources, while our approach utilizes almost 13.5% of

Xilinx Virtex-6 LX760 FPGA resources that is about 3.3x

more area overhead than the 1D-systolic. This increase in

area overhead is due to the addition of the editing phase,

which lets us for the first time eliminate data dependency in

calculating the Smith-Waterman matrix in a 2D manner

(Fig. 1). However, the area is not usually a bottleneck in the

implementation of the BWA-MEM algorithm on FPGA, and

the execution time is a more important concern. The main

contribution of our work lies in the fact that we have

eliminated the data dependency to devise a new 2D

approach to speeding up the seed extension kernel. It is

Table 2: Result of FPGA implementation.

FPGA
PE LUT FF IO BUFG Freq.

(MHz) Usage Utilization Available Usage Utilization Available Usage Utilization Usage Utilization

xc7s50csga324-2 Vertical 89 0.2% 32600 18 0.03% 65200 72 32% 1 3.13% 189

xc7s50csga324-2 Horizontal 205 0.7% 32600 39 0.05% 65200 123 57.7% 1 3.13% 185

xc7v58tffg1157-3 Vertical 89 0.02% 364200 18 0.01% 728400 72 11.8% 1 3.13% 363

xc7v58tffg1157-3 Horizontal 205 0.05% 364200 39 0.01% 728400 123 20.4% 1 3.13% 360

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 2, pp. 203-210, 2022

209

Table 3: The ASIC design of the proposed architecture.

PE Leakage Type Vertical Horizontal

Critical path delay (ns) 3.2 3.22

Cell area (nm2) 10245.31 21584.18

Number of nets 446 830

Levels of logic 14 18

Dynamic power (nW) 2.23 4.4

Power (nW) 366.7 747.3

Table 4: Execution time comparison of CPU vs. the

proposed architecture (us).

Matrix

dimension

i7-4702 Proposed

architecture

FPGA

Utilization

Speedup

10 × 10 8.956 0.0366 0.95% 245 ×
25 × 25 43.178 0.091 2.45% 474 ×
50 × 50 105.24 0.183 4.95% 576 ×

100 × 100 198.35 0.366 9.95% 542 ×
131 × 131 244.21 0.48 13.5% 509 ×

]

(a)

(b)

Fig. 6: The proposed architecture with operating Freq. 360

MHz vs. 1-D systolic arrays with operating Freq. 380 MHz

(on the same platform Xilinx Vertix 6), (a) Execution time,

and (b) Speedup.

obvious that our proposed architecture can benefit from

more parallelism for computing different seeds in parallel,

and we will not face the lack of FPGA resources.

5. DISCUSSION

The proposed architecture can be implemented on a

Virtex 6 FPGA device with a typical 131 x 131 matrix

dimension and a minimum of 19 base-pairs seed length from

a read containing 150 base-pairs, while using less than 15%

of the FPGA available resources. This indicates that the

proposed architecture can benefit from more parallelism for

computing different seeds in parallel. Our simulation results

show up to 570x and 1.4x acceleration and speedup in

comparison to software execution and the 1D-systolic

arrays, respectively in case of the 131 × 131 matrix

dimension on Virtex 6 FPGA.

6. CONCLUSION

We have proposed a newly developed algorithm of the

seed extension kernel for the well-known BWA-MEM

sequence alignment algorithm. This novel 2-dimensional,

high-throughput seed extension kernel is implemented on

FPGA. We achieved up to 570x speedup with 360MHz

operating frequency in comparison to the Intel(R) Core(TM)

i7-4702 MQ CPU. Also, we achieved up to 1.4x speedup in

comparison to the 1D-systolic arrays implemented on the

same hardware as our architecture. Our simulation results

show that the proposed architecture can work with up to 312

MHz frequency in Synopsys Design-Compiler for 180-nm

CMOS technology. By introducing the calculation and error

editing phase, we notably reduced the number of required

clock cycles for filling an N × N similarity matrix. In fact,

the state-of-art 1D-systolic array-based architectures fill the

NXN similarity matrix in 2N-1 cycles, while our proposed

architecture only takes N-1 cycles to fill the same matrix.

CREDIT AUTHORSHIP CONTRIBUTION STATEMENT

Mahdi Taheri: Conceptualization, Formal analysis,

Methodology, Resources, Roles/Writing - original draft, Writing -

review & editing. Ali Mahani: Formal analysis, Project

administration, Software, Writing - review & editing.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper. The

ethical issues, including plagiarism, informed consent,

misconduct, data fabrication and/or falsification, double

publication and/or submission, and redundancy, have been

completely observed by the authors.

REFERENCES

[1] H. Jung, C. Winefield, A. Bombarely, P. Prentis, and P.

Waterhouse, "Tools and strategies for long-read

sequencing and De novo assembly of plant genomes,"

Trends in plant science, vol. 24, no. 8, pp. 700 -724,

2019,

[2] C. Pham-Quoc, B. Kieu-Do, and T.N. Thinh, "A high-

performance FPGA-based BWA-MEM DNA sequence

alignment," Concurrency and Computation: Practice and

Experience, vol. 33, no. 18, pp. 5328, 2019.

[3] Li. Wu et al., "FPGA accelerated INDEL realignment in

the cloud," in 2019 IEEE International Symposium on

High Performance Computer Architecture (HPCA),

2019, pp. 277–290.

[4] C. Pham-Quoc, B. Kieu-Do, and T. Ngoc Thinh," An

FPGA-based seed extension IP core for BWA-MEN

DNA alignment," in 2018 International Conference on

Advanced Computing and Applications, 2018, pp. 1–6.

https://doi.org/10.1016/j.tplants.2019.05.003
https://doi.org/10.1016/j.tplants.2019.05.003
https://doi.org/10.1016/j.tplants.2019.05.003
https://doi.org/10.1016/j.tplants.2019.05.003
https://doi.org/10.1016/j.tplants.2019.05.003
https://doi.org/10.1002/cpe.5328
https://doi.org/10.1002/cpe.5328
https://doi.org/10.1002/cpe.5328
https://doi.org/10.1002/cpe.5328
https://doi.org/10.1109/HPCA.2019.00044
https://doi.org/10.1109/HPCA.2019.00044
https://doi.org/10.1109/HPCA.2019.00044
https://doi.org/10.1109/HPCA.2019.00044
https://doi.org/10.1109/ACOMP.2018.00009
https://doi.org/10.1109/ACOMP.2018.00009
https://doi.org/10.1109/ACOMP.2018.00009
https://doi.org/10.1109/ACOMP.2018.00009

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 2, pp. 203-210, 2022

210

[5] S. Canzar, and S. Salzberg, "Short read mapping: an

algorithmic tour," Proceedings of the IEEE, vol. 105,

no.3, pp. 436-458, 2015.

[6] D. Fujiki et al., "Genax: a genome sequencing

accelerator," in 45th Annual International Symposium on

Computer Architecture, 2018, pp. 69–82.

[7] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg,

"Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome," Genome biology, vol.

10, no. 3, 2009.

[8] H. Li and R. Durbin, "Fast and accurate short read

alignment with burrows–wheeler transform,"

bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

[9] R. Li et al., "SOAP2: an improved ultrafast tool for short

read alignment," Bioinformatics, vol. 25, no, 15, pp.

1966–1967, 2009.

[10] H. Li, "Aligning sequence reads, clone sequences and

assembly contigs with BWA-MEM, " ArXiv Preprint

ArXiv, vol. 1303, pp. 3997, 2013.

[11] E. J. Houtgast, V. M. Sima, K. Bertels, and Z. Al-Ars,

"An FGPA-based systolic array to accelerate the BWA-

MEM genomic mapping algorithm," in 2015

International Conference on Embedded Computer

Systems: Architectures, Modeling, and Simulation

(SAMOS), 2015, pp. 221–227.

[12] J. Cohen, "Bioinformatics an introduction for

computer scientists," Association for Computing

Machinery Computing Surveys, vol. 36, no. 2, pp. 122–

158, 2004.

[13] H. Cao et al., "A short-read multiplex sequencing

method for reliable, cost-effective and high-throughput

genotyping in large-scale studies," Human Mutation, vol.

34, no. 12, pp. 1715–1720, 2013.

[14] K. Hammad, Z. Wu, E. Ghafar-Zadeh, and S.

Magierowski, "A scalable hardware accelerator for

mobile dna sequencing," IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 29, no. 2,

pp. 273–286, 2021.

[15] M. Taheri, and A. Mahani, "Development and

hardware acceleration of a novel 2-D BWA-MEN DNA

sequencing alignment algorithm," 1st Conference on

Applied Research in Electrical Engineering (AREE),

2021.

[16] T. J. Ham et al., "Genesis: A hardware acceleration

frame- work for genomic data analysis," in 2020

ACM/IEEE 47th Annual International Symposium on

Computer Architecture (ISCA), 2020, pp. 254–267.

[17] Y. L. Chen, B. Y. Chang, C. H. Yang, and T. D.

Chiueh, "A high-throughput FPGA accelerator for short-

read mapping of the whole human genome," IEEE

Transactions on Parallel and Distributed Systems, vol.

32, pp. 6, pp. 1465–1478, 2021.

[18] Y. T. Chen, J. Cong, Z. Fang, Ji. Lei, and P. Wei, "

When spark meets FPGA: A case study for next-

generation DNA sequencing acceleration," in 8th

USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud 16), June 2016.

[19] P. Faes et al., "Scalable hardware accelerator for

comparing DNA and protein sequences," in Proceedings

of the 1st International Conference on Scalable

Information Systems, 2006, pp. 33–es.

[20] M. Taheri, S. Ansari, S. Magierowski, and A. Mahani,

"Hardware acceleration of burrows-wheeler aligner

algorithm with maximal exact matches seed extension

kernel," IET Circuits, Devices and Systems, vol. 15, no.

3, pp. 1–10, 2020.

[21] M. Taheri, H. Zandevakili, and A. Mahani, "A high-

performance memristor-based smith-waterman DNA

sequence alignment using FPNI structure," Iranian

Association of Electrical and Electronics Engineers

(IAEEE). vol. 1, no. 1, pp. 59-68, 2020.

[22] E. J. Houtgast, V. M. Sima, K. Bertels, and Z. Al-Ars,

"Hardware acceleration of BWA-MEN genomic short

read mapping for longer read lengths," Computational

Biology and Chemistry, vol. 75, pp. 54–64, 2018.

[23] D. Wheeler et al., "Database resources of the national

center for biotechnology information," Nucleic Acids

Research, vol. 35, no. suppl_1, pp. D5–D12, 2006.

BIOGRAPHY

Mahdi Taheri received his B.Sc.

degree in Electronic Engineering from

the Khaje Nasir University of

Technology (KNTU), Tehran, Iran in

2017 and his M.Sc. degree in Electronic

Engineering from Shahid Bahonar

University, Kerman, Iran in 2020. Since

then, he was with the RSS Lab at

Shahid Bahonar University for 1 year, and now, he is

studying for his Ph.D. at the Tallinn University of

Technology (TalTech). His research interests focus on

hardware assessment and reliability of neural networks,

fault- tolerant design, and FPGA-based accelerators.

Ali Mahani received his B.Sc. degree in

Electronic Engineering from Shahid

Bahonar University, Kerman, Iran in

2001 and his M.Sc. and Ph.D. degrees

both in Electronic Engineering from the

Iran University of Science and

Technology, Tehran, Iran in 2003 and

2009, respectively. Since then, he has

been with the Electrical Engineering Department of Shahid

Bahonar University where he is currently an associate

professor. His research interests focus on fault-tolerant

design, FPGA-based accelerators, approximate digital

circuits, stochastic computing, and networked systems.

Copyrights
© 2022 Licensee Shahid Chamran University of Ahvaz, Ahvaz, Iran. This article is an open-access article distributed

under the terms and conditions of the Creative Commons Attribution –NonCommercial 4.0 International (CC BY-NC 4.0)

License (http://creativecommons.org/licenses/by-nc/4.0/).

https://doi.org/10.1109/JPROC.2015.2455551
https://doi.org/10.1109/JPROC.2015.2455551
https://doi.org/10.1109/JPROC.2015.2455551
https://doi.org/10.1109/ISCA.2018.00017
https://doi.org/10.1109/ISCA.2018.00017
https://doi.org/10.1109/ISCA.2018.00017
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp336
https://doi.org/10.1093/bioinformatics/btp336
https://doi.org/10.1093/bioinformatics/btp336
https://arxiv.org/abs/1303.3997
https://arxiv.org/abs/1303.3997
https://arxiv.org/abs/1303.3997
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1145/1031120.1031122
https://doi.org/10.1145/1031120.1031122
https://doi.org/10.1145/1031120.1031122
https://doi.org/10.1145/1031120.1031122
http://dx.doi.org/10.1002/humu.22439
http://dx.doi.org/10.1002/humu.22439
http://dx.doi.org/10.1002/humu.22439
http://dx.doi.org/10.1002/humu.22439
http://dx.doi.org/10.1109/TVLSI.2020.3044527
http://dx.doi.org/10.1109/TVLSI.2020.3044527
http://dx.doi.org/10.1109/TVLSI.2020.3044527
http://dx.doi.org/10.1109/TVLSI.2020.3044527
http://dx.doi.org/10.1109/TVLSI.2020.3044527
https://civilica.com/doc/1265858/
https://civilica.com/doc/1265858/
https://civilica.com/doc/1265858/
https://civilica.com/doc/1265858/
https://civilica.com/doc/1265858/
https://doi.org/10.1109/ISCA45697.2020.00031
https://doi.org/10.1109/ISCA45697.2020.00031
https://doi.org/10.1109/ISCA45697.2020.00031
https://doi.org/10.1109/ISCA45697.2020.00031
https://doi.org/10.1109/TPDS.2021.3051011
https://doi.org/10.1109/TPDS.2021.3051011
https://doi.org/10.1109/TPDS.2021.3051011
https://doi.org/10.1109/TPDS.2021.3051011
https://doi.org/10.1109/TPDS.2021.3051011
http://dx.doi.org/10.1109/FCCM.2016.18
http://dx.doi.org/10.1109/FCCM.2016.18
http://dx.doi.org/10.1109/FCCM.2016.18
http://dx.doi.org/10.1109/FCCM.2016.18
http://dx.doi.org/10.1109/FCCM.2016.18
https://doi.org/10.1145/1146847.1146880
https://doi.org/10.1145/1146847.1146880
https://doi.org/10.1145/1146847.1146880
https://doi.org/10.1145/1146847.1146880
http://dx.doi.org/10.1049/cds2.12005
http://dx.doi.org/10.1049/cds2.12005
http://dx.doi.org/10.1049/cds2.12005
http://dx.doi.org/10.1049/cds2.12005
http://dx.doi.org/10.1049/cds2.12005
https://dx.doi.org/10.22055/jaree.2021.36117.1016
https://dx.doi.org/10.22055/jaree.2021.36117.1016
https://dx.doi.org/10.22055/jaree.2021.36117.1016
https://dx.doi.org/10.22055/jaree.2021.36117.1016
https://dx.doi.org/10.22055/jaree.2021.36117.1016
http://dx.doi.org/10.1016/j.compbiolchem.2018.03.024
http://dx.doi.org/10.1016/j.compbiolchem.2018.03.024
http://dx.doi.org/10.1016/j.compbiolchem.2018.03.024
http://dx.doi.org/10.1016/j.compbiolchem.2018.03.024
https://doi.org/10.1093/nar/gkl1031
https://doi.org/10.1093/nar/gkl1031
https://doi.org/10.1093/nar/gkl1031
http://creativecommons.org/licenses/by-nc/4.0/

