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Abstract: Approximate computing is considered a promising way to design high-performance and low-power arithmetic 

units recently. This paper proposes an energy-efficient logarithmic multiplier for error-tolerant applications. The 

proposed multiplier uses a novel technique to calculate the powers of two products to reduce critical path complexity. 

Also, a correction term is provided to improve the multiplier accuracy. Additionally, the use of approximate adders in 

our design is investigated, and optimal truncation length is obtained through simulations. We evaluated our work both 

in accuracy and hardware criteria. Experiments on a 16-bit proposed multiplier with approximate adder show that 

power-delay product (PDP) is significantly reduced by 34.05% compared to the best logarithmic multipliers available in 

the literature, while the mean relative error distance (MRED) is also decreased by 21.1%. The results of embedding our 

multiplier in the dequantization step of the JPEG standard show that the image quality is improved in comparison with 

other logarithmic multipliers. In addition, a subtle drop in image quality compared to utilizing exact multipliers proves 

the viability of our design. 
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1. INTRODUCTION 

Significant computational demands of large-scale 

applications such as scientific computing, social media, and 

financial analysis have exceeded available resources [1]. 

Machine learning algorithms are becoming more accurate 

every day and, in many areas, have gone beyond human 

accuracy, but this accuracy comes at the expense of increased 

computations [2]. Due to recent advances in technology and 

the end of Dennard scaling, it has become difficult to improve 

the performance of computing systems at current power 

levels [3]. A wide range of applications that require huge 

computations can maintain their output well enough despite 

some computational error. Some of these applications are as 

follows [4]: 

 Applications such as machine learning and adaptive 

filters that are inherently error-tolerant. 

 In digital signal processing, because the inputs are 

often noisy, accuracy is limited. 

 In image processing, due to limitations in human 

cognition, the existence of some errors in 

calculations is not detectable in the output. 

Approximate computing introduces some errors in the 

calculations but simplifies the arithmetic operations. 

Therefore, approximate computing can be considered as a 

promising way to reduce power consumption. Approximate 

computing techniques can be applied to various levels, such 

as hardware, architecture, algorithm, and software [5]. 

Adders and multipliers are the arithmetic units that are the 

main subject of hardware-level approximations [6]. In the 

aforementioned applications, there are an abundant number 

of arithmetic processing that involve addition and 

multiplication. To design high-performance arithmetic 

processors, it is necessary to optimize the performance and 

power consumption of its main components, namely adders 

and multipliers. For this reason, much attention has been paid 

to approximate computing techniques at the circuit level to 

improve these units. 
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Multiplication is more elaborate than the addition 

operation and has always been a limiting factor to improve 

speed and area [7]. Hence enhancing this operation can result 

in considerable improvement in the whole design. Also, most 

applications mentioned above consist of some dominant 

kernels that intensively rely on multiplication. So, multipliers 

become primary candidates for approximation computing to 

improve whole system performance [8]. A conventional 

multiplier consists of partial product generation, 

accumulation, and final addition [9]. Various parts of a 

multiplier are capable of applying approximate techniques 

[5]. Different approximation approaches are proposed to 

design highly efficient multipliers [10]: Approximate 

recursive multipliers are built of 2×2 approximate multiplier 

blocks to form a complete multiplier [11]. In [12], a dynamic 

truncation method based on leading-one position has been 

introduced, which reduces the multiplier bit-width. Paper [13] 

proposed using an m×m multiplier to design approximate n×n 

multipliers where m<n. Approximate radix-4 booth multiplier 

[14] is another multiplication technique. A different category 

from traditional multipliers are logarithmic multipliers that 

use binary logarithms to simplify multiplication operations. 

In the logarithm domain multiplication converts to addition. 

Multipliers that use logarithm transformation are inherently 

erroneous. Such error occurs for the following reasons: 1) a 

limited number of precision bits and 2) errors that happen at 

the time of transformation to the logarithmic system. Mitchell 

introduced the first logarithmic multiplier [15]. In 

conventional approximate multipliers, the accuracy is high, 

but the area and power consumption are also high. But in 

logarithmic multipliers reducing hardware overhead as well 

as reducing power, take precedence over multiplier accuracy. 

This property makes logarithmic multipliers suitable for 

large-scale applications that require high parallelism [16], 

[17]. In this paper, we introduce a new logarithmic multiplier 

to optimize power consumption and reduce hardware area and 

latency, while improving multiplier accuracy in terms of error 

amount as well as error distribution. The main contributions 

of this article are summarized as follows: 

 A new multiplication algorithm is presented that 

uses less hardware resources than previous designs 

and is therefore more power efficient. 

 We have introduced and used a correction term that 

improves the multiplier error characteristic. 

 A new method has been proposed to calculate the 

product of the power of number two, which reduces 

the critical path delay significantly. 

 The use of approximate adders in the proposed 

design has been investigated and the truncation 

length parameter for compromise between circuit 

complexity and multiplier approximation error has 

been introduced so that the proposed design can be 

adjusted for different applications. 

The rest of the paper is organized as follows: in Section 

2, we have introduced logarithmic multipliers, notably 

Mitchell’s algorithm. The main problems of these multipliers 

are described, and the main approaches to alleviate them are 

reviewed. The first part of Section 3 is devoted to proposing 

the multiplication algorithm. The remainder of this section 

deals with the hardware architecture of the multiplier. Error 

analysis and simulation results are presented in Section 4. 

Section 5 implements our multiplier in JPEG image 

compression and decompression standard and evaluates the 

output image’s quality. Finally, Section 6 concludes the 

paper. 

2. REVIEW AND RELATED WORKS 

Due to the complexity of the multiplication operation, 

approximate multipliers are designed for trade-off between 

accuracy and design efficiency. Various approximation 

methods have been proposed to simplify multiplier circuit. 

Exploring available references shows that approximation 

techniques in multipliers are mainly grouped in logarithmic 

and non-logarithmic categories. Non-logarithmic multipliers 

usually use approximation techniques to simplify different 

parts of a typical multiplier such as partial product generation 

[14, 22] and partial product accumulation [23, 24]. These 

multipliers have relatively low approximation errors and a 

more complex hardware instead. Logarithmic multipliers, as 

their name implies, convert complex multiplication operation 

into simpler addition operation in the logarithm domain, 

which results in more compact hardware than non-

logarithmic multipliers. Unlike a conventional multiplier, a 

logarithmic multiplier needs logarithm conversion, addition, 

and antilogarithm stages. Because of inherent error in 

logarithm transformation, they are approximate multipliers. 

There are different ways to convert binary numbers into the 

logarithmic numbers system: 1) iterative methods, which are 

very time-consuming and need several cycles to converge to 

an acceptable result. 2) look-up table-based methods that are 

accurate but need complex and increased hardware. 3) using 

a piece-wise linear approximation of the function log 𝑥. The 

third method is high-speed, and implementing this method 

needs relatively fewer resources. The First logarithmic 

multiplier, which uses a piece-wise linear approximation, was 

proposed by Mitchell [15]. Here, the algorithm is briefly 

expressed. Assume that we want to multiply two fixed-point 

numbers A and B; they can be represented in the form 

2𝑘𝐴,𝐵(1 + 𝑥𝐴,𝐵) and 𝑥𝐴, 𝑥𝐵 are between [0,1). 2𝑘𝐴 and 2𝑘𝐵 are 

the largest powers of two smaller than or equal to A and B, 

respectively. It means 𝑘𝐴 and 𝑘𝐵 represent the position of the 

most significant one in A and B. Taking the logarithms of A 

and B, we have log2 𝐴, 𝐵 = 𝑘𝐴,𝐵 + log2(1 + 𝑥𝐴,𝐵). Mitchell's 

method to compute this term is to use the approximation 

log2(1 + 𝑥) ≈ 𝑥. Thus, the multiplication is simply 

calculated with only shift and add operations. The problem 

with Mitchell's algorithm is that this method has a relatively 

large error and always underestimates the logarithms, so the 

product is, in any case, smaller than or equal to exact results.  

The Mitchell's multiplier accuracy improvement methods can 

be categorized into four main groups [25], as shown in Fig. 1. 

Mitchell's method is based on a piece-wise linear 

approximation in which the lines are in intervals between 

powers of two. Each line has two intersections with the exact 

logarithm curve; intersections are at powers of two. In divided 

approximation methods, a range of Mitchell's algorithms is 

divided into some more fine-grained intervals, and in each, a 

more precise equation is derived to approximate the curve 

better. In [26], the authors proposed implementing a 

logarithm converter based on Mitchell's method. For 
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Fig. 1: Different classes of improving Mitchell's accuracy. 

accuracy improvement, regions between powers of two are 

split into some smaller intervals, and within them, a more 

precise equation is placed instead of Mitchell's original 

equation for approximating the logarithms. Worst case 

relative error in original Mitchell's conversion is 5.36%, but 

in [26], this error is reduced to 0.93, 0.43, and 0.15 percent 

for 2-region, 3-region, and 6-region correcting algorithms, 

respectively. For calculating these equations, an error-

correcting circuit must be placed in hardware, which means 

increased hardware. Mahalingam et al. [25] used the operand 

decomposition technique to reduce the error in Mitchell's 

multiplier. Operand decomposition was first introduced in 

[27] to reduce the array's switching activity and the tree 

multipliers. In [15], Mitchell showed that his algorithm is 

more accurate when there is no carryover in the mantissa part 

during the summation step. Operand decomposition reduces 

the number of "1" bits in the decomposed operands; this 

means less chance to produce a carryover from the mantissa 

part into the integer part when summing up the logarithms. It 

has been shown that operand decomposition reduces 

Mitchell's multiplication error by 44.7% on average, and to 

achieve accuracy further, this work can be used with other 

error reduction methods. The main drawback of this work is 

its hardware overhead: The multipliers are doubled; 

moreover, there is a need for a decomposition circuit and an 

adder to compute the final product. 

Correction term-based approaches add a term to the 

results obtained from the original Mitchell's algorithm to 

reduce the error. McLaren in [28] showed that multiplication 

error is only related to the mantissa part (fractional parts 𝑥𝐴 

and 𝑥𝐵), thus repeating for every characteristic. For error 

correction, different correction values would be added to the 

final result based on various combinations of 𝑥𝐴 and 𝑥𝐵; but 

it is impractical. McLaren split the range of 𝑥 ∈ [0,1) into 

eight regions of 0.125 and made a table of correction values 

for each combination of these ranges. With this modification 

mean of the errors reduces from 3.614 to 0.0363. The paper 

states that their method has increased area and power 

consumption about 30% over the original Mitchell's 

algorithm. The first iterative logarithmic multiplier was 

presented in [15]. The magnitude of error in Mitchell's 

algorithm is 2𝑘1+𝑘2(𝑥1𝑥2) when there is no carry and 

2𝑘1+𝑘2(𝑥1
′ 𝑥2

′ ) when we have carryover from mantissa 

respectively (𝑥1
′  and 𝑥2

′  are the two's complements of 𝑥1 and 

𝑥2). Considering 𝑥1𝑥2 or 𝑥1
′ 𝑥2

′  as a new product, if this term 

is computed with another Mitchell multiplier and this 

correction value is added with the approximate product 

computed before, the error reduces significantly at the cost of 

extra hardware. 

Several articles have attempted to optimize Mitchell's 

multiplier hardware. In [5], three different approximate 

adders are exploited in the adder stage of a logarithmic 

multiplier. They tried various truncation lengths for adders 

and reported the effects on hardware efficiency and error 

criteria. The logarithmic multiplier in [17] was improved in 

different aspects: they used efficient fully parallel leading-

one detectors, exploited efficient shift amount calculation, 

and finally introduced parameter w (the truncation width) and 

designed a customizable logarithmic multiplier for 

compromising between hardware costs and accuracy. A 

modified exact adder is proposed in [16], as in the final 

addition of the multiplier, some states do not occur; they can 

use a simplified adder. 

The one-sided error distribution of Mitchell's method is 

another problem that must be considered. In [28], correction 

terms changed the distribution. About 68% of errors fall in 

the range -1.21 and 1.29, while errors in the original algorithm 

are between 0.507 and 6.721. in [5], using an inexact set-one 

adder causes a somewhat double-sided error distribution. 

Authors in [29] have proposed a novel logarithm conversion 

algorithm that differs from Mitchell's. in this algorithm, 

instead of finding the most significant power of two smaller 

than the operands, they find the nearest power of two to the 

operand. This modification leads to a reduced error and a 

double-sided error distribution, which avoids error 

accumulation in many applications like matrix multiplication. 

However, finding the nearest ones needs more complex 

hardware and leads to dealing with negative numbers and 

subtractors. In the next section, we will present another way 

to improve accuracy, which at the same time reduces 

hardware costs. In Section 3, we discuss selecting the 

approximation, which keeps the distribution of errors double-

sided. 

3. PROPOSED METHOD 

In this section, our proposed approximate multiplier is 

introduced. At first, the multiplication algorithm is described, 

and then multiplier hardware is investigated. 

3.1. Multiplication Algorithm 

Consider operands A and B that have to be multiplied. 

We can represent operands as (1): 

{
𝐴 = ℎ1 + 𝑞1 = 2𝑘1 + 𝑞1  𝑤ℎ𝑒𝑟𝑒  0 ≤ 𝑞1 < 2𝑘1

 
𝐵 = ℎ2 + 𝑞2 = 2𝑘2 + 𝑞2  𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑞2 < 2𝑘2

             (1) 

Equation (1) shows the operands are decomposed into the 

largest power of two smaller or equal to them plus an extra 

term. So, the multiplication becomes from (2) and (3): 

𝑃𝑒𝑥𝑎𝑐𝑡 = 𝐴 × 𝐵 = 2𝑘1+𝑘2 + 2𝑘1𝑞2 + 2𝑘2𝑞1 + 𝑞1𝑞2           (2) 

𝑃𝑎𝑝𝑝𝑟𝑜𝑥 = 2𝑘1+𝑘2 + 2𝑘1𝑞2 + 2𝑘2𝑞1 + 𝑞1𝑞2𝑎𝑝𝑝𝑟𝑜𝑥
             (3) 

As seen in (2), the first term is 2 to the power of 𝑘1 + 𝑘2 

Which can be simply computed with a shift operation. In [29], 

term 2𝑘1+𝑘2 was calculated by giving the summation of 𝑘1 

and 𝑘2 to a decoder. However, here we directly shift 2𝑘1 to 

the left by the amount of 𝑘2. Two other terms, 2𝑘1𝑞2 and 

2𝑘2𝑞1, are products of an arbitrary number and a power of 

two. To produce these terms, we shift 𝑞1 and 𝑞2 to the left, 

respectively, by 𝑘2 and 𝑘1. In order to compute the last term, 

𝑞1𝑞2, which itself is a product term, we have used 

approximation. The approximation is as follows: q1 and q2 are 
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approximated to the largest power of two smaller or equal to 

them, as shown in (4): 

{
𝑞1 = 2𝑚1(1 + 𝑟1) = 2𝑚1𝑥1         0 ≤ 𝑟1 < 1

 
𝑞2 = 2𝑚2(1 + 𝑟2) = 2𝑚2  𝑥2      0 ≤ 𝑟2 < 1

                    (4) 

With the approximation mentioned above, we 

approximate 𝑞1 and 𝑞2 as equation 4 with 𝑘 ∈ {1,2,4} as (5).  

𝑞1𝑞2 = 𝑘 × 2𝑚1+𝑚2                                                            (5) 

Computing this term becomes similar to the calculation 

of 2𝑘1+𝑘2Which was discussed earlier, and then calculating 

coefficient 𝑘. So, we can obtain this term by shifting 2𝑚1 to 

the left by 𝑚2 .thus 𝑘 is a power of two; the result can be 

obtained only by shifting 2𝑚1+𝑚2  to the left. The only 

approximation used in this work is the computation of the 

𝑞1𝑞2 term. The reason why we used such approximation is 

discussed in the next section. The complete workflow of the 

proposed multiplier is described in Fig. 2. 

3.2. Correction Term Selection 

To select the best option for approximating 𝑞1𝑞2, three 

different 𝑘 were candidates, i.e., 1, 2, and 4. This brings us 

three approximations 2𝑚1+𝑚2, 2𝑚1+𝑚2+1, and 2𝑚1+𝑚2+2. 

The absolute error for each option is calculated in (8). 

 

𝑒𝑟𝑟𝑜𝑟 = |𝑃𝑒𝑥𝑎𝑐𝑡 − 𝑃𝑎𝑝𝑝𝑟𝑜𝑥|                                                (6) 

Concerning (2) and (3), the equation (6) becomes: 

𝑒𝑟𝑟𝑜𝑟 = |𝑞1𝑞2 − 𝑞1𝑞2𝑎𝑝𝑝𝑟𝑜𝑥
|                                            (7) 

⇒ {

𝑒𝑟𝑟𝑜𝑟1 = |2𝑚1+𝑚2𝑥1𝑥2 − 2𝑚1+𝑚2|       (𝑘 = 1)

𝑒𝑟𝑟𝑜𝑟2 = |2𝑚1+𝑚2𝑥1𝑥2 − 2𝑚1+𝑚2+1|   (𝑘 = 2)

𝑒𝑟𝑟𝑜𝑟3 = |2𝑚1+𝑚2𝑥1𝑥2 − 2𝑚1+𝑚2+2|   (𝑘 = 4)

           (8) 

To select the best option, we decided to pick the 𝑘, which 

in most cases gives us the least error. To do so, two conditions 

were examined, and solving these inequalities leads to the 

following circumscriptions (9), (10): 

𝑒𝑟𝑟𝑜𝑟1 < 𝑒𝑟𝑟𝑜𝑟2  ⇒ 𝑥1𝑥2 < 1.5 ,   0 ≤ 𝑥1, 𝑥2 < 1       (9) 

𝑒𝑟𝑟𝑜𝑟2 < 𝑒𝑟𝑟𝑜𝑟3  ⇒ 𝑥1𝑥2 < 3 ,      0 ≤ 𝑥1, 𝑥2 < 1     (10) 

𝑥1𝑥2 product is plotted in Fig. 3 , and red and blue lines 

show the borders where 𝑥1𝑥2 is 1.5 and 3 respectively. This 

plot clearly shows that in most cases (about 68%), 𝑘 = 2 i.e., 

2𝑚1+𝑚2+1 approximation for 𝑞1𝑞2 has the minimum error, so 

we selected it for our design. 

3.3. Hardware Architecture 

The hardware implementation of our proposed multiplier is 

described. The multiplier block diagram is shown in Fig. 4. 

LOD units are leading-one-detectors, which their structure is 

taken from [30]. LOD finds the most significant 1 in its input 

and keeps it in output while making other bits zero. Priority 

encoder (PE) determines the position of the most valuable 1 

in number. It also has a zero flag, which becomes high in the 

case of zero input. Shifter blocks are combinational barrel 

shifters, and their architecture is the same as shifters proposed 

in [31]. 

 
Fig. 2: Proposed multiplication algorithm. 

 
Fig. 3: x1 and x2 product plot separated by 1.5 and 3 lines. 

Operands A and B are given to LOD1 and LOD2 as 

inputs. The PE1 and PE2 take the LOD1 and LOD2 outputs, 

which are in one hot representation format, and calculate 𝑘1 

and 𝑘2. 𝑞1 and 𝑞2 are computed by XORing ℎ1 and ℎ2 with 

A and B. We have used a novel approach to calculate term 

2𝑘1+𝑘2. In [29], the authors have used an adder and a decoder 

after PEs to find this term's value. However, in this paper, the 

adder and the decoder are eliminated. Instead, we have placed 

a shifter after LOD1, and the shift amount comes from PE2, 

and PE1 is no longer on its path. With these modifications, it 

seems the level of logic and hardware area must decrease to 

some extent. Shifter2 and shifter3 are responsible for 

calculating terms 2𝑘1𝑞2 and 2𝑘2𝑞1, respectively. To 

approximate 𝑞1𝑞2, first, 𝑞1 is given to PE3 to obtain 𝑚1. Note 

that there is no need for LOD because the PE itself finds the 

position of most significant ‘1’. On the other hand, 𝑞2 

transfers through LOD3, and 2𝑚2 is computed. With the use 

of shifter4, we calculate 2𝑚1+𝑚2. In this paper, to reduce the 

mean error, we used approximation 2𝑚1+𝑚2+1. We reach this 

term easily by concatenating a ‘0’ on the right side of 2𝑚1+𝑚2. 

The four terms calculated before must be added to 

produce the final result. To reduce the complexity of the adder 
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Fig. 4: Proposed approximate multiplier. 

stage, we consider two terms 2𝑘1+𝑘2 and 2𝑚1+𝑚2+1. Thus 

2𝑘1+𝑘2 is a power of 2 and is always greater than 2𝑚1+𝑚2+1; 

we can OR them to find the addition. Lastly, the three terms 

are summed up in an adder, and the final product is obtained. 

3.4. Exploiting Approximate Adders 

A large part of the logarithmic multiplier is devoted to 

adders. This urged us to investigate the use of approximate 

adders in our design. The utilization of approximate adders in 

logarithmic multipliers has been studied in [5]. Some types of 

approximate adders were exploited, and the results showed 

that set-one adders outperform other types. In [29], a 

modified version of set-one adders was introduced and 

employed in their logarithmic multiplier. Therefore, we bring 

our attention to set-one adders and explore the performance 

of our proposed multiplier with them. An n-bit set-one adder 

with m truncated bits (SOA-m) is composed of an m-bit 

approximate part for the least significant bits (lower part of 

the augend and addend) and an exact part for (n−m) most 

significant bits. N-bit SOA-m is depicted in Fig. 5. The 

expressions (11) and (12) describe lower m bit of a set-one 

adder: 

𝑠𝑢𝑚[𝑚 − 1: 0] = 1                                                          (11) 

𝑐𝑖𝑛 = 𝑎[𝑚 − 1] AND 𝑏[𝑚 − 1]                                        (12) 

The adder used in our design sums up three terms to build 

the product. It is composed of a set of 3 to 2 compressors (full 

adder units) followed by a ripple carry adder. As the bit width 

of the result is twice the inputs in multiplication, the adder is 

costly in terms of power and area, and the carry chain causes 

a relatively high delay. Set-one adder can alleviate hardware 

overhead because there are no logical circuits for calculating 

the ‘m’ right-hand bits of the result. So, there is a reduction 

of 2m full adders in our design (m full adders in compressor 

 
Fig. 5: SOA with m truncation bits. 

stage plus m full adders in the ripple carry adder). The delay 

also significantly improves since SOA shrinks lengthy carry 

chain by m bits. The effect of approximation bit numbers in 

the final adder on the accuracy of the proposed multiplier is 

investigated to pick the best value of m. MRED criterion is 

chosen for this purpose. As presented in Fig. 6, for a 16-bit 

multiplier, selecting m to values up to 16 nearly has no impact 

on our multiplier accuracy. Therefore, we chose 16 for 

maximum hardware saving. This means our design is more 

robust than previous works in [5] and [29], in which the 

MRED started to immediately increase when m was larger 

than 11 and 15, respectively. 

4. EXPERIMENTAL RESULTS 

We evaluate our work and compare it with some similar 

works available in the literature in this section. Prior to 

experimental results, error metrics for approximate designs 

are introduced. These criteria are measured for our proposed 

algorithm. Hardware simulations are done, and hardware 

metrics such as area, power, and delay are assessed. For 

evaluation, two 16×16 multipliers with both exact and 

approximate adders have been considered. 

4.1. Accuracy Evaluation 

To assess the accuracy and error characteristics of the 

multiplier, the multiplication algorithm is implemented in 

behavioral level. Because exhaustive simulations are time-

consuming, 107 pairs of random inputs were given to the 

model, and results were obtained. Error metrics, including 

error rate (ER), mean related error distance (MRED), and 

normalized error distance (NMED), are calculated. For 

comparison, multiplier designs available in papers [29], [15], 

and [5] are considered, and the results are listed in Table 1. 

As expected, simulation results verify that our multiplier 

outperforms in terms of accuracy metrics. Because of an 

additional correction term, the MRED and NMED measures 

of the proposed algorithm are lower than LM [15] and ALM-

SOA [5]. Although nearest-one detectors in [29] are removed, 

a good selection of correction terms can compensate for the 

effects, and even results show a reduction in mean relative 

error to about 25.6% than the best available work [29]. It is 

evident from Table 1 that using set-one adders in our 

multiplier does not affect the accuracy severely, and even 

with a high number of truncated bits (m), accuracy metrics 

stay about their values with an exact adder. 

4.2. Hardware Evaluation 

We coded a 16-bit multiplier for hardware assessment 

based on the proposed algorithm. All hardware simulations 

were done in Synopsys Design Compiler with default 

settings, using TSMC 180nm technology. Table 2 presents 

 



M. Arab Nezhad et al.  Journal of Applied Research in Electrical Engineering, Vol. 2, No. 1, pp. 95-102, 2023 

100 

 

 

 
Fig. 6: effect of the number of approximate bits in adder stage on 

the accuracy of the 16-bit multiplier. 

obtained results from simulations. Compared to the proposed 

multiplier in [29], we removed costly subtractors and nearest-

one detectors and replaced them with an array of XORs and 

leading-one detectors, respectively, expecting a power and 

area reduction in our design. Results confirmed that our 

modifications caused a meaningful improvement in both area 

and power consumption. 

The critical path in [29] is related to the path where the 

term 2𝑘1+𝑘2 is calculated. This path goes through an adder for 

computing 𝑘1 + 𝑘2 and a priority encoder for calculating 

2𝑘1+𝑘2. To reduce the delay, we proposed a novel way for 

2𝑘1+𝑘2 computation, in which the adder and decoder are 

replaced with a shifter. The results show a 24% reduction in 

critical path delay with respect to ILM-EA. As discussed in 

Section 3, our algorithm has more persistence to 

approximation in its final adder so that we can exploit this 

characteristic for further hardware improvements. Simulation 

results show that by setting truncation bits (m) to 16, we can 

achieve significant hardware savings and reduce the large 

carry chain of the final adder to half its length. 

To decide which multiplier design is preferable overall, 

i.e., both accuracy and hardware metrics, we compared 

PDP×MRED of the multipliers. The results are presented in 

Table 3.  

Multiplier designs with lower MRED and PDP and, as a 

result, with lower PDP×MRED are more favorable. As seen 

from Table 3, our proposed multiplier with approximate 

adder has the least PDP-MRED product, and therefore it is 

the most hardware-efficient design over others while 

considering accuracy. 

5. JPEG APPLICATION 

We employed our work in the real-world application 

JPEG, an image compression standard [32], To show our 

proposed approximate multiplier's applicability. Image 

compression in jpeg is as follows: the image is first 

partitioned in 8×8 blocks. Then Discrete Cosine Transform  

 

 

Table 1: Error metrics. 

Multiplier MRED ER (%) NMED 

LM [15] 0.0384 99.77 0.0092 

ILM-EA [29] 0.0289 99.95 0.0069 

ALM-SOA-11 [5] 0.0330 98.97 0.0080 

Proposed 

(Exact Adder) 
0.0215 99.95 0.0064 

Proposed 

(SOA-16 Adder) 
0.0228 99.99 0.0064 

Table 2: Hardware metrics. 

Multiplier Power 

(mW) 

Delay 

(nS) 

Area 

(µm2) 

PDP 

(pJ) 

LM [15] 6.00 34.94 146338 209.64 

ILM-EA [29] 8.85 34.49 158629 305.23 

ALM-SOA-11 [5] 4.29 23.50 124871 100.815 

Proposed 

(Exact Adder) 

5.31 29.29 139595 155.53 

Proposed 

 (SOA-16 Adder) 

4.96 20.68 122214 102.57 

Table 3: PDP×MRED of approximate multipliers. 

Multiplier PDP×MRED 

LM [15] 8.05 

ILM-EA [29] 8.82 

ALM-SOA-11 [5] 3.32 

Proposed 

(Exact Adder) 

3.34 

Proposed 

 (SOA-16 Adder) 

2.33 

 

(DCT) is calculated for each block, and after that, the 

quantization step is done. This step is attained by dividing the 

matrix of DCT coefficients by the quantization matrix in an 

element-wise fashion and rounding the results. Then an 

entropy coding is applied to the resulted matrix to reduce the 

image size. Image decompression starts by decoding the data 

and then dequantizing the blocks. Dequantizing is done by 

multiplying the matrix of quantization into each block. This 

step is where we have exploited our multiplier. After 

dequantization, the inverse of DCT (IDCT) is computed, and 

the image is formed. For evaluating the applicability, we 

coded the lossy JPEG standard in MATLAB. We then 

implemented some approximate multipliers, including our 

design, in the dequantization part of the JPEG standard. Two 

measures Peak Signal to Noise Ratio (PSNR) and structural 

similarity (SSIM), are used to compare and inspect the 

applicability of multipliers. Both PSNR and SSIM are widely 

used in image processing; they assess the quality of a 

compressed image. The higher the PSNR, the better the 

quality of the compressed or reconstructed image. Simulation 

results in Table 4 show that using the approximate multipliers 

does not significantly affect the decompressed image's 

quality. As expected, our multiplier has the least quality 

reduction in output image due to its lower MRED. 

 

 

 



M. Arab Nezhad et al.  Journal of Applied Research in Electrical Engineering, Vol. 2, No. 1, pp. 95-102, 2023 

101 

 

 

Table 4: PSNR and SSIM values for decompressed images. 

Multiplier PSNR SSIM 

Exact 35.1281 0.9095 

LM [15] 30.2662 0.9001 

ILM-EA [29] 31.9424 0.8953 

ALM-SOA-11 [5] 30.2744 0.8759 

Proposed 

(Exact Adder) 

32.9800 0.9037 

6. CONCLUSION 

In this paper, a new algorithm for logarithmic 

multiplication is proposed and analysed. The use of 

approximate adders (SOA) in the final stage of multiplication 

is also investigated. 16-bit multipliers were implemented 

using this algorithm, and the simulation results on showed 

that by using the appropriate correction term, the multiplier 

accuracy is significantly improved compared to previous 

similar works, so that MRED has decreased by about 25.6% 

compared to ILM-EA. analysing change of MRED with 

respect to truncation width of SOA showed that our design is 

more robust to adder truncation than previous designs, so that 

at ALM-SOA-11 and ILM-EA  the best truncation width is 11 

bits, but MRED in our design does not change much up to 16 

bits. Which can be exploited for more hardware savings. 

Hardware synthesis also show an improvement of 2.12% and 

12% in area, and latency respectively and a 13.5% increase in 

power consumption compared to best results available in the 

literature. The PDP×MRED criterion also shows that our 

multiplier shows the best performance among the existing 

designs by considering both error characteristics and 

hardware measures. Finally, we implemented our multiplier 

in JPEG standard, and results showed that our design is 

applicable in such error-tolerant applications without notable 

quality degradation. 
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