
J. Appl. Res. Electr. Eng., Vol. 2, No. 1, pp. 95-102, 2023 DOI: 10.22055/jaree.2021.36119.1018

Shahid Chamran

University of Ahvaz

Iranian Association of

Electrical and Electronics

Engineers

Journal of Applied Research in Electrical Engineering

E-ISSN: 2783-2864

P-ISSN: 2717-414X

Homepage: https://jaree.scu.ac.ir/

Research Article

95

Design of Low-Power Approximate Logarithmic Multipliers with Improved Accuracy

Mojtaba Arab Nezhad , and Ali Mahani*

Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran

* Corresponding Author: amahani@uk.ac.ir

Abstract: Approximate computing is considered a promising way to design high-performance and low-power arithmetic

units recently. This paper proposes an energy-efficient logarithmic multiplier for error-tolerant applications. The

proposed multiplier uses a novel technique to calculate the powers of two products to reduce critical path complexity.

Also, a correction term is provided to improve the multiplier accuracy. Additionally, the use of approximate adders in

our design is investigated, and optimal truncation length is obtained through simulations. We evaluated our work both

in accuracy and hardware criteria. Experiments on a 16-bit proposed multiplier with approximate adder show that

power-delay product (PDP) is significantly reduced by 34.05% compared to the best logarithmic multipliers available in

the literature, while the mean relative error distance (MRED) is also decreased by 21.1%. The results of embedding our

multiplier in the dequantization step of the JPEG standard show that the image quality is improved in comparison with

other logarithmic multipliers. In addition, a subtle drop in image quality compared to utilizing exact multipliers proves

the viability of our design.

Keywords: Logarithmic multiplier, approximate computing, error-tolerant.

Article history

Received 19 December 2020; Revised 15 June 2021; Accepted 13 August 2021; Published online 20 August 2021

© 2021 Published by Shahid Chamran University of Ahvaz & Iranian Association of Electrical and Electronics Engineers (IAEEE)
How to cite this article

M. Arab Nezhad, and A. Mahani, “Design of low-power approximate logarithmic multipliers with improved accuracy,”

J. Appl. Res. Electr. Eng., vol. 2, no. 1, pp. 95-102, 2023. DOI: 10.22055/jaree.2021.36119.1018

1. INTRODUCTION

Significant computational demands of large-scale

applications such as scientific computing, social media, and

financial analysis have exceeded available resources [1].

Machine learning algorithms are becoming more accurate

every day and, in many areas, have gone beyond human

accuracy, but this accuracy comes at the expense of increased

computations [2]. Due to recent advances in technology and

the end of Dennard scaling, it has become difficult to improve

the performance of computing systems at current power

levels [3]. A wide range of applications that require huge

computations can maintain their output well enough despite

some computational error. Some of these applications are as

follows [4]:

 Applications such as machine learning and adaptive

filters that are inherently error-tolerant.

 In digital signal processing, because the inputs are

often noisy, accuracy is limited.

 In image processing, due to limitations in human

cognition, the existence of some errors in

calculations is not detectable in the output.

Approximate computing introduces some errors in the

calculations but simplifies the arithmetic operations.

Therefore, approximate computing can be considered as a

promising way to reduce power consumption. Approximate

computing techniques can be applied to various levels, such

as hardware, architecture, algorithm, and software [5].

Adders and multipliers are the arithmetic units that are the

main subject of hardware-level approximations [6]. In the

aforementioned applications, there are an abundant number

of arithmetic processing that involve addition and

multiplication. To design high-performance arithmetic

processors, it is necessary to optimize the performance and

power consumption of its main components, namely adders

and multipliers. For this reason, much attention has been paid

to approximate computing techniques at the circuit level to

improve these units.

 Check for

 updates

https://doi.org/10.22055/jaree.2021.36119.1018
https://jaree.scu.ac.ir/
mailto:amahani.uk.ac.ir
https://doi.org/10.22055/jaree.2021.36119.1018
https://orcid.org/0000-0002-2414-5584
https://orcid.org/0000-0003-4916-202X
https://doi.org/10.22055/jaree.2021.36119.1018
https://doi.org/10.22055/jaree.2021.36119.1018

M. Arab Nezhad et al. Journal of Applied Research in Electrical Engineering, Vol. 2, No. 1, pp. 95-102, 2023

96

Multiplication is more elaborate than the addition

operation and has always been a limiting factor to improve

speed and area [7]. Hence enhancing this operation can result

in considerable improvement in the whole design. Also, most

applications mentioned above consist of some dominant

kernels that intensively rely on multiplication. So, multipliers

become primary candidates for approximation computing to

improve whole system performance [8]. A conventional

multiplier consists of partial product generation,

accumulation, and final addition [9]. Various parts of a

multiplier are capable of applying approximate techniques

[5]. Different approximation approaches are proposed to

design highly efficient multipliers [10]: Approximate

recursive multipliers are built of 2×2 approximate multiplier

blocks to form a complete multiplier [11]. In [12], a dynamic

truncation method based on leading-one position has been

introduced, which reduces the multiplier bit-width. Paper [13]

proposed using an m×m multiplier to design approximate n×n

multipliers where m<n. Approximate radix-4 booth multiplier

[14] is another multiplication technique. A different category

from traditional multipliers are logarithmic multipliers that

use binary logarithms to simplify multiplication operations.

In the logarithm domain multiplication converts to addition.

Multipliers that use logarithm transformation are inherently

erroneous. Such error occurs for the following reasons: 1) a

limited number of precision bits and 2) errors that happen at

the time of transformation to the logarithmic system. Mitchell

introduced the first logarithmic multiplier [15]. In

conventional approximate multipliers, the accuracy is high,

but the area and power consumption are also high. But in

logarithmic multipliers reducing hardware overhead as well

as reducing power, take precedence over multiplier accuracy.

This property makes logarithmic multipliers suitable for

large-scale applications that require high parallelism [16],

[17]. In this paper, we introduce a new logarithmic multiplier

to optimize power consumption and reduce hardware area and

latency, while improving multiplier accuracy in terms of error

amount as well as error distribution. The main contributions

of this article are summarized as follows:

 A new multiplication algorithm is presented that

uses less hardware resources than previous designs

and is therefore more power efficient.

 We have introduced and used a correction term that

improves the multiplier error characteristic.

 A new method has been proposed to calculate the

product of the power of number two, which reduces

the critical path delay significantly.

 The use of approximate adders in the proposed

design has been investigated and the truncation

length parameter for compromise between circuit

complexity and multiplier approximation error has

been introduced so that the proposed design can be

adjusted for different applications.

The rest of the paper is organized as follows: in Section

2, we have introduced logarithmic multipliers, notably

Mitchell’s algorithm. The main problems of these multipliers

are described, and the main approaches to alleviate them are

reviewed. The first part of Section 3 is devoted to proposing

the multiplication algorithm. The remainder of this section

deals with the hardware architecture of the multiplier. Error

analysis and simulation results are presented in Section 4.

Section 5 implements our multiplier in JPEG image

compression and decompression standard and evaluates the

output image’s quality. Finally, Section 6 concludes the

paper.

2. REVIEW AND RELATED WORKS

Due to the complexity of the multiplication operation,

approximate multipliers are designed for trade-off between

accuracy and design efficiency. Various approximation

methods have been proposed to simplify multiplier circuit.

Exploring available references shows that approximation

techniques in multipliers are mainly grouped in logarithmic

and non-logarithmic categories. Non-logarithmic multipliers

usually use approximation techniques to simplify different

parts of a typical multiplier such as partial product generation

[14, 22] and partial product accumulation [23, 24]. These

multipliers have relatively low approximation errors and a

more complex hardware instead. Logarithmic multipliers, as

their name implies, convert complex multiplication operation

into simpler addition operation in the logarithm domain,

which results in more compact hardware than non-

logarithmic multipliers. Unlike a conventional multiplier, a

logarithmic multiplier needs logarithm conversion, addition,

and antilogarithm stages. Because of inherent error in

logarithm transformation, they are approximate multipliers.

There are different ways to convert binary numbers into the

logarithmic numbers system: 1) iterative methods, which are

very time-consuming and need several cycles to converge to

an acceptable result. 2) look-up table-based methods that are

accurate but need complex and increased hardware. 3) using

a piece-wise linear approximation of the function log 𝑥. The

third method is high-speed, and implementing this method

needs relatively fewer resources. The First logarithmic

multiplier, which uses a piece-wise linear approximation, was

proposed by Mitchell [15]. Here, the algorithm is briefly

expressed. Assume that we want to multiply two fixed-point

numbers A and B; they can be represented in the form

2𝑘𝐴,𝐵(1 + 𝑥𝐴,𝐵) and 𝑥𝐴, 𝑥𝐵 are between [0,1). 2𝑘𝐴 and 2𝑘𝐵 are

the largest powers of two smaller than or equal to A and B,

respectively. It means 𝑘𝐴 and 𝑘𝐵 represent the position of the

most significant one in A and B. Taking the logarithms of A

and B, we have log2 𝐴, 𝐵 = 𝑘𝐴,𝐵 + log2(1 + 𝑥𝐴,𝐵). Mitchell's

method to compute this term is to use the approximation

log2(1 + 𝑥) ≈ 𝑥. Thus, the multiplication is simply

calculated with only shift and add operations. The problem

with Mitchell's algorithm is that this method has a relatively

large error and always underestimates the logarithms, so the

product is, in any case, smaller than or equal to exact results.

The Mitchell's multiplier accuracy improvement methods can

be categorized into four main groups [25], as shown in Fig. 1.

Mitchell's method is based on a piece-wise linear

approximation in which the lines are in intervals between

powers of two. Each line has two intersections with the exact

logarithm curve; intersections are at powers of two. In divided

approximation methods, a range of Mitchell's algorithms is

divided into some more fine-grained intervals, and in each, a

more precise equation is derived to approximate the curve

better. In [26], the authors proposed implementing a

logarithm converter based on Mitchell's method. For

M. Arab Nezhad et al. Journal of Applied Research in Electrical Engineering, Vol. 2, No. 1, pp. 95-102, 2023

97

Fig. 1: Different classes of improving Mitchell's accuracy.

accuracy improvement, regions between powers of two are

split into some smaller intervals, and within them, a more

precise equation is placed instead of Mitchell's original

equation for approximating the logarithms. Worst case

relative error in original Mitchell's conversion is 5.36%, but

in [26], this error is reduced to 0.93, 0.43, and 0.15 percent

for 2-region, 3-region, and 6-region correcting algorithms,

respectively. For calculating these equations, an error-

correcting circuit must be placed in hardware, which means

increased hardware. Mahalingam et al. [25] used the operand

decomposition technique to reduce the error in Mitchell's

multiplier. Operand decomposition was first introduced in

[27] to reduce the array's switching activity and the tree

multipliers. In [15], Mitchell showed that his algorithm is

more accurate when there is no carryover in the mantissa part

during the summation step. Operand decomposition reduces

the number of "1" bits in the decomposed operands; this

means less chance to produce a carryover from the mantissa

part into the integer part when summing up the logarithms. It

has been shown that operand decomposition reduces

Mitchell's multiplication error by 44.7% on average, and to

achieve accuracy further, this work can be used with other

error reduction methods. The main drawback of this work is

its hardware overhead: The multipliers are doubled;

moreover, there is a need for a decomposition circuit and an

adder to compute the final product.

Correction term-based approaches add a term to the

results obtained from the original Mitchell's algorithm to

reduce the error. McLaren in [28] showed that multiplication

error is only related to the mantissa part (fractional parts 𝑥𝐴

and 𝑥𝐵), thus repeating for every characteristic. For error

correction, different correction values would be added to the

final result based on various combinations of 𝑥𝐴 and 𝑥𝐵; but

it is impractical. McLaren split the range of 𝑥 ∈ [0,1) into

eight regions of 0.125 and made a table of correction values

for each combination of these ranges. With this modification

mean of the errors reduces from 3.614 to 0.0363. The paper

states that their method has increased area and power

consumption about 30% over the original Mitchell's

algorithm. The first iterative logarithmic multiplier was

presented in [15]. The magnitude of error in Mitchell's

algorithm is 2𝑘1+𝑘2(𝑥1𝑥2) when there is no carry and

2𝑘1+𝑘2(𝑥1
′ 𝑥2

′) when we have carryover from mantissa

respectively (𝑥1
′ and 𝑥2

′ are the two's complements of 𝑥1 and

𝑥2). Considering 𝑥1𝑥2 or 𝑥1
′ 𝑥2

′ as a new product, if this term

is computed with another Mitchell multiplier and this

correction value is added with the approximate product

computed before, the error reduces significantly at the cost of

extra hardware.

Several articles have attempted to optimize Mitchell's

multiplier hardware. In [5], three different approximate

adders are exploited in the adder stage of a logarithmic

multiplier. They tried various truncation lengths for adders

and reported the effects on hardware efficiency and error

criteria. The logarithmic multiplier in [17] was improved in

different aspects: they used efficient fully parallel leading-

one detectors, exploited efficient shift amount calculation,

and finally introduced parameter w (the truncation width) and

designed a customizable logarithmic multiplier for

compromising between hardware costs and accuracy. A

modified exact adder is proposed in [16], as in the final

addition of the multiplier, some states do not occur; they can

use a simplified adder.

The one-sided error distribution of Mitchell's method is

another problem that must be considered. In [28], correction

terms changed the distribution. About 68% of errors fall in

the range -1.21 and 1.29, while errors in the original algorithm

are between 0.507 and 6.721. in [5], using an inexact set-one

adder causes a somewhat double-sided error distribution.

Authors in [29] have proposed a novel logarithm conversion

algorithm that differs from Mitchell's. in this algorithm,

instead of finding the most significant power of two smaller

than the operands, they find the nearest power of two to the

operand. This modification leads to a reduced error and a

double-sided error distribution, which avoids error

accumulation in many applications like matrix multiplication.

However, finding the nearest ones needs more complex

hardware and leads to dealing with negative numbers and

subtractors. In the next section, we will present another way

to improve accuracy, which at the same time reduces

hardware costs. In Section 3, we discuss selecting the

approximation, which keeps the distribution of errors double-

sided.

3. PROPOSED METHOD

In this section, our proposed approximate multiplier is

introduced. At first, the multiplication algorithm is described,

and then multiplier hardware is investigated.

3.1. Multiplication Algorithm

Consider operands A and B that have to be multiplied.

We can represent operands as (1):

{
𝐴 = ℎ1 + 𝑞1 = 2𝑘1 + 𝑞1 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑞1 < 2𝑘1

𝐵 = ℎ2 + 𝑞2 = 2𝑘2 + 𝑞2 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑞2 < 2𝑘2

 (1)

Equation (1) shows the operands are decomposed into the

largest power of two smaller or equal to them plus an extra

term. So, the multiplication becomes from (2) and (3):

𝑃𝑒𝑥𝑎𝑐𝑡 = 𝐴 × 𝐵 = 2𝑘1+𝑘2 + 2𝑘1𝑞2 + 2𝑘2𝑞1 + 𝑞1𝑞2 (2)

𝑃𝑎𝑝𝑝𝑟𝑜𝑥 = 2𝑘1+𝑘2 + 2𝑘1𝑞2 + 2𝑘2𝑞1 + 𝑞1𝑞2𝑎𝑝𝑝𝑟𝑜𝑥
 (3)

As seen in (2), the first term is 2 to the power of 𝑘1 + 𝑘2

Which can be simply computed with a shift operation. In [29],

term 2𝑘1+𝑘2 was calculated by giving the summation of 𝑘1

and 𝑘2 to a decoder. However, here we directly shift 2𝑘1 to

the left by the amount of 𝑘2. Two other terms, 2𝑘1𝑞2 and

2𝑘2𝑞1, are products of an arbitrary number and a power of

two. To produce these terms, we shift 𝑞1 and 𝑞2 to the left,

respectively, by 𝑘2 and 𝑘1. In order to compute the last term,

𝑞1𝑞2, which itself is a product term, we have used

approximation. The approximation is as follows: q1 and q2 are

M. Arab Nezhad et al. Journal of Applied Research in Electrical Engineering, Vol. 2, No. 1, pp. 95-102, 2023

98

approximated to the largest power of two smaller or equal to

them, as shown in (4):

{
𝑞1 = 2𝑚1(1 + 𝑟1) = 2𝑚1𝑥1 0 ≤ 𝑟1 < 1

𝑞2 = 2𝑚2(1 + 𝑟2) = 2𝑚2 𝑥2 0 ≤ 𝑟2 < 1

 (4)

With the approximation mentioned above, we

approximate 𝑞1 and 𝑞2 as equation 4 with 𝑘 ∈ {1,2,4} as (5).

𝑞1𝑞2 = 𝑘 × 2𝑚1+𝑚2 (5)

Computing this term becomes similar to the calculation

of 2𝑘1+𝑘2Which was discussed earlier, and then calculating

coefficient 𝑘. So, we can obtain this term by shifting 2𝑚1 to

the left by 𝑚2 .thus 𝑘 is a power of two; the result can be

obtained only by shifting 2𝑚1+𝑚2 to the left. The only

approximation used in this work is the computation of the

𝑞1𝑞2 term. The reason why we used such approximation is

discussed in the next section. The complete workflow of the

proposed multiplier is described in Fig. 2.

3.2. Correction Term Selection

To select the best option for approximating 𝑞1𝑞2, three

different 𝑘 were candidates, i.e., 1, 2, and 4. This brings us

three approximations 2𝑚1+𝑚2, 2𝑚1+𝑚2+1, and 2𝑚1+𝑚2+2.

The absolute error for each option is calculated in (8).

𝑒𝑟𝑟𝑜𝑟 = |𝑃𝑒𝑥𝑎𝑐𝑡 − 𝑃𝑎𝑝𝑝𝑟𝑜𝑥| (6)

Concerning (2) and (3), the equation (6) becomes:

𝑒𝑟𝑟𝑜𝑟 = |𝑞1𝑞2 − 𝑞1𝑞2𝑎𝑝𝑝𝑟𝑜𝑥
| (7)

⇒ {

𝑒𝑟𝑟𝑜𝑟1 = |2𝑚1+𝑚2𝑥1𝑥2 − 2𝑚1+𝑚2| (𝑘 = 1)

𝑒𝑟𝑟𝑜𝑟2 = |2𝑚1+𝑚2𝑥1𝑥2 − 2𝑚1+𝑚2+1| (𝑘 = 2)

𝑒𝑟𝑟𝑜𝑟3 = |2𝑚1+𝑚2𝑥1𝑥2 − 2𝑚1+𝑚2+2| (𝑘 = 4)

 (8)

To select the best option, we decided to pick the 𝑘, which

in most cases gives us the least error. To do so, two conditions

were examined, and solving these inequalities leads to the

following circumscriptions (9), (10):

𝑒𝑟𝑟𝑜𝑟1 < 𝑒𝑟𝑟𝑜𝑟2 ⇒ 𝑥1𝑥2 < 1.5 , 0 ≤ 𝑥1, 𝑥2 < 1 (9)

𝑒𝑟𝑟𝑜𝑟2 < 𝑒𝑟𝑟𝑜𝑟3 ⇒ 𝑥1𝑥2 < 3 , 0 ≤ 𝑥1, 𝑥2 < 1 (10)

𝑥1𝑥2 product is plotted in Fig. 3 , and red and blue lines

show the borders where 𝑥1𝑥2 is 1.5 and 3 respectively. This

plot clearly shows that in most cases (about 68%), 𝑘 = 2 i.e.,

2𝑚1+𝑚2+1 approximation for 𝑞1𝑞2 has the minimum error, so

we selected it for our design.

3.3. Hardware Architecture

The hardware implementation of our proposed multiplier is

described. The multiplier block diagram is shown in Fig. 4.

LOD units are leading-one-detectors, which their structure is

taken from [30]. LOD finds the most significant 1 in its input

and keeps it in output while making other bits zero. Priority

encoder (PE) determines the position of the most valuable 1

in number. It also has a zero flag, which becomes high in the

case of zero input. Shifter blocks are combinational barrel

shifters, and their architecture is the same as shifters proposed

in [31].

Fig. 2: Proposed multiplication algorithm.

Fig. 3: x1 and x2 product plot separated by 1.5 and 3 lines.

Operands A and B are given to LOD1 and LOD2 as

inputs. The PE1 and PE2 take the LOD1 and LOD2 outputs,

which are in one hot representation format, and calculate 𝑘1

and 𝑘2. 𝑞1 and 𝑞2 are computed by XORing ℎ1 and ℎ2 with

A and B. We have used a novel approach to calculate term

2𝑘1+𝑘2. In [29], the authors have used an adder and a decoder

after PEs to find this term's value. However, in this paper, the

adder and the decoder are eliminated. Instead, we have placed

a shifter after LOD1, and the shift amount comes from PE2,

and PE1 is no longer on its path. With these modifications, it

seems the level of logic and hardware area must decrease to

some extent. Shifter2 and shifter3 are responsible for

calculating terms 2𝑘1𝑞2 and 2𝑘2𝑞1, respectively. To

approximate 𝑞1𝑞2, first, 𝑞1 is given to PE3 to obtain 𝑚1. Note

that there is no need for LOD because the PE itself finds the

position of most significant ‘1’. On the other hand, 𝑞2

transfers through LOD3, and 2𝑚2 is computed. With the use

of shifter4, we calculate 2𝑚1+𝑚2. In this paper, to reduce the

mean error, we used approximation 2𝑚1+𝑚2+1. We reach this

term easily by concatenating a ‘0’ on the right side of 2𝑚1+𝑚2.

The four terms calculated before must be added to

produce the final result. To reduce the complexity of the adder

M. Arab Nezhad et al. Journal of Applied Research in Electrical Engineering, Vol. 2, No. 1, pp. 95-102, 2023

99

h1

LOD1 LOD2

Shifter2

Adder

Shifter1

Shifter3

A B

16bits

Shifter4

PE2

h2

PE3

T2

T1

h1

B[14:0]

q1 q2

F

F[30]

P

h1[14:0]

PE1
k2

k1

T3

h2[14:0]

A[14:0]

16bits

16bits

4bits

15bits

15bits

4bits

31bits

30bits 30bits

15bits

4bits

F[29:0]

31bits

30bits

32bits

15bits

LOD3

Fig. 4: Proposed approximate multiplier.

stage, we consider two terms 2𝑘1+𝑘2 and 2𝑚1+𝑚2+1. Thus

2𝑘1+𝑘2 is a power of 2 and is always greater than 2𝑚1+𝑚2+1;

we can OR them to find the addition. Lastly, the three terms

are summed up in an adder, and the final product is obtained.

3.4. Exploiting Approximate Adders

A large part of the logarithmic multiplier is devoted to

adders. This urged us to investigate the use of approximate

adders in our design. The utilization of approximate adders in

logarithmic multipliers has been studied in [5]. Some types of

approximate adders were exploited, and the results showed

that set-one adders outperform other types. In [29], a

modified version of set-one adders was introduced and

employed in their logarithmic multiplier. Therefore, we bring

our attention to set-one adders and explore the performance

of our proposed multiplier with them. An n-bit set-one adder

with m truncated bits (SOA-m) is composed of an m-bit

approximate part for the least significant bits (lower part of

the augend and addend) and an exact part for (n−m) most

significant bits. N-bit SOA-m is depicted in Fig. 5. The

expressions (11) and (12) describe lower m bit of a set-one

adder:

𝑠𝑢𝑚[𝑚 − 1: 0] = 1 (11)

𝑐𝑖𝑛 = 𝑎[𝑚 − 1] AND 𝑏[𝑚 − 1] (12)

The adder used in our design sums up three terms to build

the product. It is composed of a set of 3 to 2 compressors (full

adder units) followed by a ripple carry adder. As the bit width

of the result is twice the inputs in multiplication, the adder is

costly in terms of power and area, and the carry chain causes

a relatively high delay. Set-one adder can alleviate hardware

overhead because there are no logical circuits for calculating

the ‘m’ right-hand bits of the result. So, there is a reduction

of 2m full adders in our design (m full adders in compressor

Fig. 5: SOA with m truncation bits.

stage plus m full adders in the ripple carry adder). The delay

also significantly improves since SOA shrinks lengthy carry

chain by m bits. The effect of approximation bit numbers in

the final adder on the accuracy of the proposed multiplier is

investigated to pick the best value of m. MRED criterion is

chosen for this purpose. As presented in Fig. 6, for a 16-bit

multiplier, selecting m to values up to 16 nearly has no impact

on our multiplier accuracy. Therefore, we chose 16 for

maximum hardware saving. This means our design is more

robust than previous works in [5] and [29], in which the

MRED started to immediately increase when m was larger

than 11 and 15, respectively.

4. EXPERIMENTAL RESULTS

We evaluate our work and compare it with some similar

works available in the literature in this section. Prior to

experimental results, error metrics for approximate designs

are introduced. These criteria are measured for our proposed

algorithm. Hardware simulations are done, and hardware

metrics such as area, power, and delay are assessed. For

evaluation, two 16×16 multipliers with both exact and

approximate adders have been considered.

4.1. Accuracy Evaluation

To assess the accuracy and error characteristics of the

multiplier, the multiplication algorithm is implemented in

behavioral level. Because exhaustive simulations are time-

consuming, 107 pairs of random inputs were given to the

model, and results were obtained. Error metrics, including

error rate (ER), mean related error distance (MRED), and

normalized error distance (NMED), are calculated. For

comparison, multiplier designs available in papers [29], [15],

and [5] are considered, and the results are listed in Table 1.

As expected, simulation results verify that our multiplier

outperforms in terms of accuracy metrics. Because of an

additional correction term, the MRED and NMED measures

of the proposed algorithm are lower than LM [15] and ALM-

SOA [5]. Although nearest-one detectors in [29] are removed,

a good selection of correction terms can compensate for the

effects, and even results show a reduction in mean relative

error to about 25.6% than the best available work [29]. It is

evident from Table 1 that using set-one adders in our

multiplier does not affect the accuracy severely, and even

with a high number of truncated bits (m), accuracy metrics

stay about their values with an exact adder.

4.2. Hardware Evaluation

We coded a 16-bit multiplier for hardware assessment

based on the proposed algorithm. All hardware simulations

were done in Synopsys Design Compiler with default

settings, using TSMC 180nm technology. Table 2 presents

M. Arab Nezhad et al. Journal of Applied Research in Electrical Engineering, Vol. 2, No. 1, pp. 95-102, 2023

100

Fig. 6: effect of the number of approximate bits in adder stage on

the accuracy of the 16-bit multiplier.

obtained results from simulations. Compared to the proposed

multiplier in [29], we removed costly subtractors and nearest-

one detectors and replaced them with an array of XORs and

leading-one detectors, respectively, expecting a power and

area reduction in our design. Results confirmed that our

modifications caused a meaningful improvement in both area

and power consumption.

The critical path in [29] is related to the path where the

term 2𝑘1+𝑘2 is calculated. This path goes through an adder for

computing 𝑘1 + 𝑘2 and a priority encoder for calculating

2𝑘1+𝑘2. To reduce the delay, we proposed a novel way for

2𝑘1+𝑘2 computation, in which the adder and decoder are

replaced with a shifter. The results show a 24% reduction in

critical path delay with respect to ILM-EA. As discussed in

Section 3, our algorithm has more persistence to

approximation in its final adder so that we can exploit this

characteristic for further hardware improvements. Simulation

results show that by setting truncation bits (m) to 16, we can

achieve significant hardware savings and reduce the large

carry chain of the final adder to half its length.

To decide which multiplier design is preferable overall,

i.e., both accuracy and hardware metrics, we compared

PDP×MRED of the multipliers. The results are presented in

Table 3.

Multiplier designs with lower MRED and PDP and, as a

result, with lower PDP×MRED are more favorable. As seen

from Table 3, our proposed multiplier with approximate

adder has the least PDP-MRED product, and therefore it is

the most hardware-efficient design over others while

considering accuracy.

5. JPEG APPLICATION

We employed our work in the real-world application

JPEG, an image compression standard [32], To show our

proposed approximate multiplier's applicability. Image

compression in jpeg is as follows: the image is first

partitioned in 8×8 blocks. Then Discrete Cosine Transform

Table 1: Error metrics.

Multiplier MRED ER (%) NMED

LM [15] 0.0384 99.77 0.0092

ILM-EA [29] 0.0289 99.95 0.0069

ALM-SOA-11 [5] 0.0330 98.97 0.0080

Proposed

(Exact Adder)
0.0215 99.95 0.0064

Proposed

(SOA-16 Adder)
0.0228 99.99 0.0064

Table 2: Hardware metrics.

Multiplier Power

(mW)

Delay

(nS)

Area

(µm2)

PDP

(pJ)

LM [15] 6.00 34.94 146338 209.64

ILM-EA [29] 8.85 34.49 158629 305.23

ALM-SOA-11 [5] 4.29 23.50 124871 100.815

Proposed

(Exact Adder)

5.31 29.29 139595 155.53

Proposed

 (SOA-16 Adder)

4.96 20.68 122214 102.57

Table 3: PDP×MRED of approximate multipliers.

Multiplier PDP×MRED

LM [15] 8.05

ILM-EA [29] 8.82

ALM-SOA-11 [5] 3.32

Proposed

(Exact Adder)

3.34

Proposed

 (SOA-16 Adder)

2.33

(DCT) is calculated for each block, and after that, the

quantization step is done. This step is attained by dividing the

matrix of DCT coefficients by the quantization matrix in an

element-wise fashion and rounding the results. Then an

entropy coding is applied to the resulted matrix to reduce the

image size. Image decompression starts by decoding the data

and then dequantizing the blocks. Dequantizing is done by

multiplying the matrix of quantization into each block. This

step is where we have exploited our multiplier. After

dequantization, the inverse of DCT (IDCT) is computed, and

the image is formed. For evaluating the applicability, we

coded the lossy JPEG standard in MATLAB. We then

implemented some approximate multipliers, including our

design, in the dequantization part of the JPEG standard. Two

measures Peak Signal to Noise Ratio (PSNR) and structural

similarity (SSIM), are used to compare and inspect the

applicability of multipliers. Both PSNR and SSIM are widely

used in image processing; they assess the quality of a

compressed image. The higher the PSNR, the better the

quality of the compressed or reconstructed image. Simulation

results in Table 4 show that using the approximate multipliers

does not significantly affect the decompressed image's

quality. As expected, our multiplier has the least quality

reduction in output image due to its lower MRED.

M. Arab Nezhad et al. Journal of Applied Research in Electrical Engineering, Vol. 2, No. 1, pp. 95-102, 2023

101

Table 4: PSNR and SSIM values for decompressed images.

Multiplier PSNR SSIM

Exact 35.1281 0.9095

LM [15] 30.2662 0.9001

ILM-EA [29] 31.9424 0.8953

ALM-SOA-11 [5] 30.2744 0.8759

Proposed

(Exact Adder)

32.9800 0.9037

6. CONCLUSION

In this paper, a new algorithm for logarithmic

multiplication is proposed and analysed. The use of

approximate adders (SOA) in the final stage of multiplication

is also investigated. 16-bit multipliers were implemented

using this algorithm, and the simulation results on showed

that by using the appropriate correction term, the multiplier

accuracy is significantly improved compared to previous

similar works, so that MRED has decreased by about 25.6%

compared to ILM-EA. analysing change of MRED with

respect to truncation width of SOA showed that our design is

more robust to adder truncation than previous designs, so that

at ALM-SOA-11 and ILM-EA the best truncation width is 11

bits, but MRED in our design does not change much up to 16

bits. Which can be exploited for more hardware savings.

Hardware synthesis also show an improvement of 2.12% and

12% in area, and latency respectively and a 13.5% increase in

power consumption compared to best results available in the

literature. The PDP×MRED criterion also shows that our

multiplier shows the best performance among the existing

designs by considering both error characteristics and

hardware measures. Finally, we implemented our multiplier

in JPEG standard, and results showed that our design is

applicable in such error-tolerant applications without notable

quality degradation.

CREDIT AUTHORSHIP CONTRIBUTION STATEMENT

Mojtaba Arab Nezhad: Conceptualization, Data

curation, Formal analysis, Funding acquisition,

Methodology, Resources, Software, Visualization, Writing -

original draft. Ali Mahani: Investigation, Project

administration, Supervision, Validation, Writing - review &

editing.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper. The

ethical issues; including plagiarism, informed consent,

misconduct, data fabrication and/or falsification, double

publication and/or submission, redundancy has been

completely observed by the authors.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,”

ACM Computing Surveys (CSUR), vol. 48, pp. 1-33, 2016.

[2] V. Sze, Y. -H. Chen, T. -J. Yang, and J. S. Emer, “Efficient

processing of deep neural networks: A tutorial and survey,”

Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329,

2017.

[3] P. Yin, C. Wang, H. Waris, W. Liu, Y. Han, and F. Lombardi,

“Design and analysis of energy-efficient dynamic range

approximate logarithmic multipliers for machine learning,”

IEEE Transactions on Sustainable Computing, 2020.

[4] R. Pilipović, P. Bulić, and U. Lotrič, “A two-stage operand

trimming approximate logarithmic multiplier,” IEEE

Transactions on Circuits and Systems I: Regular Papers,

2021.

[5] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F.

Lombardi, “Design and evaluation of approximate logarithmic

multipliers for low power error-tolerant applications,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol.

65, no. 9, pp. 2856-2868, 2018.

[6] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, and G. Di Meo,

“Comparison and extension of approximate 4-2 compressors

for low-power approximate multipliers,” IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 67, no. 9, pp.

3021-3034, 2020.

[7] D. Nandan, J. Kanungo, and A. Mahajan, “An efficient VLSI

architecture design for logarithmic multiplication by using the

improved operand decomposition,” Integration, vol. 58, pp.

134-141, 2018.

[8] H. Saadat, H. Bokhari, and S. Parameswaran, “Minimally biased

multipliers for approximate integer and floating-point

multiplication,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 37, no. 11, pp.

2623-2635, 2018.

[9] H. Jiang, L. Liu, F. Lombardi, and J. Han, “Approximate

arithmetic circuits: Design and evaluation,” Approximate

Circuits, Springer, 2019, pp. 67-98.

[10] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han, “A

comparative evaluation of approximate multipliers,” in 2016

IEEE/ACM International Symposium on Nanoscale

Architectures (NANOARCH), 2016.

[11] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy

for power with an underdesigned multiplier architecture,” in

2011 24th Internatioal Conference on VLSI Design, 2011.

[12] S. Hashemi, and S. Reda, “Approximate multipliers and

dividers using dynamic bit selection,” Approximate Circuits,

Springer, 2019, pp. 25-44.

[13] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and

N. S. Kim, “Energy-efficient approximate multiplication for

digital signal processing and classification applications,”

IEEE Transactions on Very Large-Scale Integration (VLSI)

Systems, vol. 23, no. 6, pp. 1180-1184, 2015.

[14] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi,

“Design of approximate radix-4 booth multipliers for error-

tolerant computing,” IEEE Transactions on Computers, vol.

66, no. 8, pp. 1435-1441, 2017.

[15] J. N. Mitchell, “Computer multiplication and division using

binary logarithms,” IRE Transactions on Electronic

Computers, vol. 4, pp. 512-517, 1962.

[16] M. S. Ansari, B. F. Cockburn, and J. Han, “An improved

logarithmic multiplier for energy-efficient neural computing,”

IEEE Transactions on Computers, vol. 70, no. 4, pp. 614-625,

2021.

[17] M. S. Kim, A. A. D. Barrio, L. T. Oliveira, R. Hermida, and N.

Bagherzadeh, “Efficient Mitchell’s approximate log

multipliers for convolutional neural networks,” IEEE

Transactions on Computers, vol. 68, no. 5, pp. 660-675, 2019.

https://doi.org/10.1145/2893356
https://doi.org/10.1145/2893356
https://www.doi.org/10.1109/JPROC.2017.2761740
https://www.doi.org/10.1109/JPROC.2017.2761740
https://www.doi.org/10.1109/JPROC.2017.2761740
https://www.doi.org/10.1109/JPROC.2017.2761740
https://www.doi.org/10.1109/TSUSC.2020.3004980
https://www.doi.org/10.1109/TSUSC.2020.3004980
https://www.doi.org/10.1109/TSUSC.2020.3004980
https://www.doi.org/10.1109/TSUSC.2020.3004980
https://www.doi.org/10.1109/TCSI.2021.3069168
https://www.doi.org/10.1109/TCSI.2021.3069168
https://www.doi.org/10.1109/TCSI.2021.3069168
https://www.doi.org/10.1109/TCSI.2021.3069168
https://www.doi.org/10.1109/TCSI.2018.2792902
https://www.doi.org/10.1109/TCSI.2018.2792902
https://www.doi.org/10.1109/TCSI.2018.2792902
https://www.doi.org/10.1109/TCSI.2018.2792902
https://www.doi.org/10.1109/TCSI.2018.2792902
https://www.doi.org/10.1109/TCSI.2020.2988353
https://www.doi.org/10.1109/TCSI.2020.2988353
https://www.doi.org/10.1109/TCSI.2020.2988353
https://www.doi.org/10.1109/TCSI.2020.2988353
https://www.doi.org/10.1109/TCSI.2020.2988353
https://doi.org/10.1016/j.vlsi.2017.02.003
https://doi.org/10.1016/j.vlsi.2017.02.003
https://doi.org/10.1016/j.vlsi.2017.02.003
https://doi.org/10.1016/j.vlsi.2017.02.003
https://www.doi.org/10.1109/TCAD.2018.2857262
https://www.doi.org/10.1109/TCAD.2018.2857262
https://www.doi.org/10.1109/TCAD.2018.2857262
https://www.doi.org/10.1109/TCAD.2018.2857262
https://www.doi.org/10.1109/TCAD.2018.2857262
https://www.doi.org/10.1007/978-3-319-99322-5_4
https://www.doi.org/10.1007/978-3-319-99322-5_4
https://www.doi.org/10.1007/978-3-319-99322-5_4
https://www.doi.org/10.1145/2950067.2950068
https://www.doi.org/10.1145/2950067.2950068
https://www.doi.org/10.1145/2950067.2950068
https://www.doi.org/10.1145/2950067.2950068
https://www.doi.org/10.1109/VLSID.2011.51
https://www.doi.org/10.1109/VLSID.2011.51
https://www.doi.org/10.1109/VLSID.2011.51
https://www.doi.org/10.1007/978-3-319-99322-5_2
https://www.doi.org/10.1007/978-3-319-99322-5_2
https://www.doi.org/10.1007/978-3-319-99322-5_2
https://www.doi.org/10.1109/TVLSI.2014.2333366
https://www.doi.org/10.1109/TVLSI.2014.2333366
https://www.doi.org/10.1109/TVLSI.2014.2333366
https://www.doi.org/10.1109/TVLSI.2014.2333366
https://www.doi.org/10.1109/TVLSI.2014.2333366
https://www.doi.org/10.1109/TC.2017.2672976
https://www.doi.org/10.1109/TC.2017.2672976
https://www.doi.org/10.1109/TC.2017.2672976
https://www.doi.org/10.1109/TC.2017.2672976
https://www.doi.org/10.1109/TEC.1962.5219391
https://www.doi.org/10.1109/TEC.1962.5219391
https://www.doi.org/10.1109/TEC.1962.5219391
https://www.doi.org/10.1109/TC.2020.2992113
https://www.doi.org/10.1109/TC.2020.2992113
https://www.doi.org/10.1109/TC.2020.2992113
https://www.doi.org/10.1109/TC.2020.2992113
https://www.doi.org/10.1109/TC.2018.2880742
https://www.doi.org/10.1109/TC.2018.2880742
https://www.doi.org/10.1109/TC.2018.2880742
https://www.doi.org/10.1109/TC.2018.2880742

M. Arab Nezhad et al. Journal of Applied Research in Electrical Engineering, Vol. 2, No. 1, pp. 95-102, 2023

102

[18] S. Mazahir, M. K. Ayub, O. Hasan, and M. Shafique,

“Probabilistic error analysis of approximate adders and

multipliers,” Approximate Circuits, Springer, 2019, pp. 99-

120.

[19] J. Ma, K. Man, T. Krilavicius, S. Guan, and T. Jeong,

“Implementation of high-performance multipliers based on

approximate compressor design,” in Proc. Int. Conf. Electrical

and Control Technol., 2011.

[20] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design

and analysis of approximate compressors for multiplication,”

IEEE Transactions on Computers, vol. 64, no. 4, pp. 984-994,

2014.

[21] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A dynamic

range unbiased multiplier for approximate applications,” in

2015 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), 2015.

[22] V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi,

“Approximate hybrid high radix encoding for energy-efficient

inexact multipliers,” IEEE Transactions on Very Large-Scale

Integration (VLSI) Systems, vol. 26, no. 3, pp. 421-430, 2017.

[23] M. Ha, and S. Lee, “Multipliers with approximate 4-2

compressors and error recovery modules,” IEEE Embedded

Systems Letters, vol. 10, no. 1, pp. 6-9, 2017.

[24] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N.

Petra, “Approximate multipliers based on new approximate

compressors,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 65, no. 12, pp. 4169-4182, 2018.

[25] V. Mahalingam, and N. Ranganathan, “An efficient and

accurate logarithmic multiplier based on operand

decomposition,” in 19th International Conference on VLSI

Design held jointly with 5th International Conference on

Embedded Systems Design (VLSID'06), 2006.

[26] K. H. Abed, and R. E. Siferd, “CMOS VLSI implementation of

a low-power logarithmic converter,” IEEE Transactions on

Computers, vol. 52, no. 11, pp. 1421-1433, 2003.

[27] M. Ito, D. Chinnery, and K. Keutzer, “Low power

multiplication algorithm for switching activity reduction

through operand decomposition,” in Proceedings 21st

International Conference on Computer Design, 2003.

[28] D. J. McLaren, “Improved Mitchell-based logarithmic

multiplier for low-power DSP applications,” in IEEE

International [Systems-on-Chip] SOC Conference, 2003.

Proceedings, 2003.

[29] M. S. Ansari, B. F. Cockburn, and J. Han, “A Hardware-

Efficient Logarithmic Multiplier with Improved Accuracy,” in

2019 Design, Automation Test in Europe Conference

Exhibition (DATE), 2019.

[30] D. Nandan, J. Kanungo, and A. Mahajan, “An efficient

architecture of leading one detector,” International Journal of

Pure and Applied Mathematics, vol. 118, no. 14, pp. 267-272,

2018.

[31] J. Chen, C.-H. Chang, Y. Wang, J. Zhao and S. Rahardja, “New

hardware and power efficient sporadic logarithmic shifters for

DSP applications,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 37, no. 4, pp.

896-900, 2017.

[32] G. K. Wallace, “The JPEG still picture compression standard,”

IEEE Transactions on Consumer Electronics, vol. 38, no. 1,

pp. xviii-xxxiv, 1992.

[33] H. Jiang, C. Liu, L. Liu, F. Lombardi and J. Han, “A review,

classification, and comparative evaluation of approximate

arithmetic circuits,” ACM Journal on Emerging Technologies

in Computing Systems (JETC), vol. 13, no. 4, pp. 1-34, 2017.

[34] T. Stouraitis and V. Paliouras, “Considering the alternatives in

low-power design,” IEEE Circuits and Devices Magazine,

vol. 17, no. 4, pp. 22-29, 2001.

[35] C. Basetas, I. Kouretas and V. Paliouras, “Low-power digital

filtering based on the logarithmic number system,” in

International Workshop on Power and Timing Modeling,

Optimization and Simulation, Springer, 2007, pp. 546-555.

BIOGRAPHY

Mojtaba Arab Nezhad received his B.S. degree in

electrical engineering from Shahid

Bahonar University, Kerman, Iran in

2016. He is currently working toward

his M.S. degree at Shahid Bahonar

University, Kerman, Iran. His

research interests include computer

arithmetic, approximate computing,

FPGA based accelerators and

accelerating deep learning algorithms.

Ali Mahani received the B. Sc. degree

in electronic engineering from Shahid

Bahonar University of Kerman, Iran,

in 2001, The M.Sc. and Ph.D. degrees

both in Electronic engineering from

Iran University of Science and

Technology (IUST), Tehran, Iran, in 2003 and 2009

respectively. Since then, he has been with the electrical

engineering department of shahid bahonar university of

kerman, where he is currently an associate professor. His

research interests focus on Fault tolerant design, FPGA-

based accelrators, approximate digital circuits, stochastic

computing and networked systems.

Copyrights
© 2021 Licensee Shahid Chamran University of Ahvaz, Ahvaz, Iran. This article is an open-access article distributed under

the terms and conditions of the Creative Commons Attribution –Non-Commercial 4.0 International (CC BY-NC 4.0)

License (http://creativecommons.org/licenses/by-nc/4.0/).

https://www.doi.org/10.1007/978-3-319-99322-5_5
https://www.doi.org/10.1007/978-3-319-99322-5_5
https://www.doi.org/10.1007/978-3-319-99322-5_5
https://www.doi.org/10.1007/978-3-319-99322-5_5
https://www.doi.org/10.1109/TC.2014.2308214
https://www.doi.org/10.1109/TC.2014.2308214
https://www.doi.org/10.1109/TC.2014.2308214
https://www.doi.org/10.1109/TC.2014.2308214
https://www.doi.org/10.1109/ICCAD.2015.7372600
https://www.doi.org/10.1109/ICCAD.2015.7372600
https://www.doi.org/10.1109/ICCAD.2015.7372600
https://www.doi.org/10.1109/ICCAD.2015.7372600
https://www.doi.org/10.1109/TVLSI.2017.2767858
https://www.doi.org/10.1109/TVLSI.2017.2767858
https://www.doi.org/10.1109/TVLSI.2017.2767858
https://www.doi.org/10.1109/TVLSI.2017.2767858
https://www.doi.org/10.1109/LES.2017.2746084
https://www.doi.org/10.1109/LES.2017.2746084
https://www.doi.org/10.1109/LES.2017.2746084
https://www.doi.org/10.1109/TCSI.2018.2839266
https://www.doi.org/10.1109/TCSI.2018.2839266
https://www.doi.org/10.1109/TCSI.2018.2839266
https://www.doi.org/10.1109/TCSI.2018.2839266
https://www.doi.org/10.1109/VLSID.2006.42
https://www.doi.org/10.1109/VLSID.2006.42
https://www.doi.org/10.1109/VLSID.2006.42
https://www.doi.org/10.1109/VLSID.2006.42
https://www.doi.org/10.1109/VLSID.2006.42
https://www.doi.org/10.1109/TC.2003.1244940
https://www.doi.org/10.1109/TC.2003.1244940
https://www.doi.org/10.1109/TC.2003.1244940
https://www.doi.org/10.1109/ICCD.2003.1240868
https://www.doi.org/10.1109/ICCD.2003.1240868
https://www.doi.org/10.1109/ICCD.2003.1240868
https://www.doi.org/10.1109/ICCD.2003.1240868
https://www.doi.org/10.1109/SOC.2003.1241461
https://www.doi.org/10.1109/SOC.2003.1241461
https://www.doi.org/10.1109/SOC.2003.1241461
https://www.doi.org/10.1109/SOC.2003.1241461
https://www.doi.org/10.23919/DATE.2019.8714868
https://www.doi.org/10.23919/DATE.2019.8714868
https://www.doi.org/10.23919/DATE.2019.8714868
https://www.doi.org/10.23919/DATE.2019.8714868
https://www.researchgate.net/publication/323243978_AN_EFFICIENT_ARCHITECTURE_OF_LEADING_ONE_DETECTOR
https://www.researchgate.net/publication/323243978_AN_EFFICIENT_ARCHITECTURE_OF_LEADING_ONE_DETECTOR
https://www.researchgate.net/publication/323243978_AN_EFFICIENT_ARCHITECTURE_OF_LEADING_ONE_DETECTOR
https://www.researchgate.net/publication/323243978_AN_EFFICIENT_ARCHITECTURE_OF_LEADING_ONE_DETECTOR
https://www.doi.org/10.1109/TCAD.2017.2740300
https://www.doi.org/10.1109/TCAD.2017.2740300
https://www.doi.org/10.1109/TCAD.2017.2740300
https://www.doi.org/10.1109/TCAD.2017.2740300
https://www.doi.org/10.1109/TCAD.2017.2740300
https://www.doi.org/10.1109/30.125072
https://www.doi.org/10.1109/30.125072
https://www.doi.org/10.1109/30.125072
https://doi.org/10.1145/3094124
https://doi.org/10.1145/3094124
https://doi.org/10.1145/3094124
https://doi.org/10.1145/3094124
https://www.doi.org/10.1109/101.950050
https://www.doi.org/10.1109/101.950050
https://www.doi.org/10.1109/101.950050
https://www.doi.org/10.1007/978-3-540-74442-9_53
https://www.doi.org/10.1007/978-3-540-74442-9_53
https://www.doi.org/10.1007/978-3-540-74442-9_53
https://www.doi.org/10.1007/978-3-540-74442-9_53
http://creativecommons.org/licenses/by-nc/4.0/

