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Abstract: This paper introduces a high-speed fault-resistant hardware implementation for the S-box of AES 

cryptographic algorithm, called HFS-box. A deep pipelining for S-box at the gate level is proposed. In addition, a new 

Dual Modular Redundancy-based (DMR-based) countermeasure is exploited in HFS-box for fault correction. The newly 

introduced countermeasure is a fault correction scheme based on the DMR technique (FC-DMR) combined with a version 

of the time redundancy technique. In the proposed architecture, when a transient random or malicious fault(s) is detected 

in each pipeline stage, the error signal corresponding to that stage increases. The control unit holds the previous correct 

value in the output of the proposed DMR voter in the other pipeline stages as soon as it observes the value ‘1’ on the error 

signal. The previous correct outputs will be kept until the fault effect disappears. The presented low-cost HFS-box 

provides a high capability of fault resistance against transient faults with any duration by imposing low area overhead 

compared with similar fault correction strategies, i.e., 137%, and low throughput degradation, i.e., 11.3%, on the original 

S-box implementation. 
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1. INTRODUCTION 

Dependable applications, like secure information 

systems, remote security services, online banking, etc., play 

an important role in our daily lives. Secure storage and 

communication are critical requirements of these 

applications. Nowadays, cryptography is extensively used in 

dependable applications to meet these critical requirements, 

thereby preventing unauthorized access to secure 

information. Another important requirement of a dependable 

application is reliability. Therefore, in many cases, a fault 

resilient approach is incorporated with original hardware 

implementation [1]. 

The Advanced Encryption Standard (AES) [2] was 

standardized by the National Institute of Standards and 

Technology (NIST) in 1997. Since then, AES has been one of 

the most common symmetric cryptographic algorithms. 

Many hardware implementations of AES have so far been 

proposed with different characteristics [3-6], each of which is 

suited for different applications with different constraints. 

Recently, many faults injection attacks have been proposed 

on AES [7-9]. In a fault attack, attackers inject malicious 

faults into the VLSI design of cryptographic primitives to 

extract secure information (i.e., cryptographic key). 

On the other hand, with transistor size downscaling, 

reducing power supply voltage level, increasing operating 

frequencies, and reducing noise margins, VLSI hardware 

designs will be more and more sensitive to random faults 

occurrence [10]. All random faults that occur in VLSI designs 

can be grouped into transient and permanent faults. 

Various fault resilient hardware implementations of AES 

were proposed to thwart the random and/or malicious faults 

effect [11-14]. AES includes four basic operations, i.e., 

SubByte, ShifRows, MixColumns, and AddRoundKey. The 

hardware implementation of SubByte operation is realized 

with 16 S-Boxes that are nonlinear mapping in which each 

byte of state array is replaced with another byte. It also 

occupies much of the total AES hardware implementation 

area [15]. In a fault injection attack, an injected fault changes 
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specific bits or bytes during a special round of the encryption 

and produces certain differences [16-19]. The nonlinear 

operations, namely, S-Boxes of the block ciphers, are 

commonly the target of DFAs. In those DFAs that faults are 

injected during the encryption process, the fault propagation 

patterns denote some relations between the input and output 

difference of the specific S-boxes. In almost all block ciphers, 

including AES, the S-box values are known, so an attacker 

can simply conclude the difference distribution table of the 

utilized S-box. The inputs of S-boxes are mainly combined 

with the round Keyes’s chunk through some mixing 

operations. The attacker can reduce the search space of some 

secret information, i.e., a part of the key, exploiting the 

difference distribution table and the relations between the 

difference of input and output. This divide-and-conquer 

method is used to extract the whole cryptographic key of most 

block ciphers quite efficiently [20]. So, integrating its 

hardware implementations with an efficient fault resilient 

scheme is crucial for making AES robust to random and/or 

malicious faults. There are many online error detection 

schemes for SubByte implementation of AES; see, for 

example, [21-22]. 

Just a few studies among previous research works have 

addressed fault correction. In fact, most of the previous 

studies have only considered the detection task, so extra 

corrective operations should be employed for their solutions. 

In [23], a hybrid redundancy is proposed in which hardware 

redundancy and time redundancy are combined for fault 

correction in S-box. Their proposed S-box architecture can 

tolerate single faults. It is worth noting that the fault-tolerant 

S-box in [23] provides a high level of reliability against the 

natural faults due to the essence of electronic devices, not the 

malicious faults in the fault attacks.  

The present paper is mainly aimed to propose a high-

throughput fault-attack resistant hardware implementation of 

AES S-box. We propose a correction scheme at the hardware 

level so that the circuit frequency is not significantly affected. 

In this paper, a high-speed design is considered. In fact, we 

exploit the features of gate-level implementation of S-box, 

allowing the pipeline technique to speed up the hardware 

implementation of SubByte operation of AES. The proposed 

technique is also practical for any generic cipher block.  

We also implement the traditional fault-tolerant 

configurations, triple time redundancy, and triple module 

redundancy of the AES S-box and compare the 

implementation results of the proposed architecture to both of 

them.  

N-tuple modular redundancy (NMR) [24] is a well-

known fault-tolerant scheme based on hardware redundancy. 

Dual modular redundancy (DMR) is the most famous 

realization of NMR for performing error detection task. 

Another special case of NMR is triple modular redundancy 

(TMR) in which three identical units execute the same 

operation and the output is deduced from the majority voter 

[25, 26].  

Time redundancy is achieved by re-computation of an 

operation using the same hardware multiple times, saving 

results, and comparing them for the error correction or 

detection tasks. N-tuple temporal redundancy is a generic 

fault-tolerant configuration of time redundancy. The triple 

time redundancy (TTR) is a special form of N-tuple temporal 

redundancy. In this scheme, the same input data is processed 

through the same unit three times. The majority voter 

generates the output of TTR by the majority vote of these 

three consecutive processes [26-27]. 

The main contributions of this paper are as follows: 

- We present an implementation of a high-throughput and 

lightweight S-box in the gate level for high-speed AES 

encryption.   

- We propose a fault-attack resistant technique, i.e., FC-

DMR, for real-time applications which cannot tolerate 

high running time and require a high-speed process. The 

proposed technique could generally be used in all digital 

functional units.  

- We design a new DMR voter that is composed of 

standard library components and could be implemented 

on any digital platform, such as FPGA and ASIC. 

- Finally, we implement the AES S-box in TMR and TTR 

configurations in the same situation as HFS-box for 

design metrics comparison.  

The rest of the paper is organized as follows. Section 2 

presents a brief background of the S-box of the AES 

algorithm and its implementation. Section 3 presents the 

proposed fault-attack resistant technique (FC-DMR) besides 

our DMR voter model. It also describes the HFS-box 

architecture. We evaluate the proposed architecture’s 

architectural characteristics in terms of area, frequency, and 

throughput in Section 4. Finally, Section 5 concludes the 

paper. 

2. S-BOX IMPLEMENTATION  

In this subsection, we describe the S-box operation and 

its utilized architecture. The proposed S-box architecture 

using composite-field in [28] is employed in this paper. The 

S-box operation, which is believed to be most resource-

consuming among other AES operations, is a nonlinear 

mapping on each state array byte. This nonlinear mapping is 

nothing but finding a multiplicative inverse over GF(28), i.e., 

Galois field, which is arithmetic in a finite 

field (a field containing a finite number of elements) contrary 

to arithmetic in a field with an infinite number of elements, 

like the field of rational numbers. 𝑥−1𝜖 𝐺𝐹(28) is followed 

by an affine transformation. In other words, if 𝑦 = 𝑆𝐵(𝑥) and 

𝑋𝜖𝐺𝐹(28) and 𝑌𝜖𝐺𝐹(28), then we have:  

 

𝑦 = 𝐴𝑥−1 + 𝑏 =

[
 
 
 
 
 
 
 
1   1   0   0   0   0   1   0
0   1   0   0   1   0   1   0
0   1   1   1   1   0   0   1
0   1   1   0   0   0   1   1
0   1   1   1   0   1   0   1
0   0   1   1   0   1   0   1
0   1   1   1   1   0   1   1
0   0   0   0   0   1   0   1]

 
 
 
 
 
 
 

  𝑥−1 +

[
 
 
 
 
 
 
 
0
0
0
0
1
0
1
1]
 
 
 
 
 
 
 

 

 (1) 

https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Finite_field
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https://en.wikipedia.org/wiki/Element_(mathematics)
https://en.wikipedia.org/wiki/Rational_number
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Since direct multiplicative inversion of S-box 

computation is costly, multiplicative inversion in composite 

fields is preferred [29]. This implementation leads to lower 

complexity and smaller implementation area.  

The S-box implementation using composite-field and 

polynomial basis is illustrated in Fig. 1. 

As shown in this figure, the 8-bit input of multiplicative 

inversion, i.e., 𝑋 = ∑ 𝛼𝑖𝑥𝑖
7
𝑖=0 in the binary field GF (28) using 

the transformation matrix δ, transforms to composite-field 

𝐺𝐹(28)/𝐺𝐹(((22)2)2). In turn, the output of the 

multiplicative inverse from composite-field transforms back 

to binary field GF (28) by the inverse transformation matrix 

δ-1 to obtain X-1. The hierarchical composite-field 

decomposition, i.e., 𝐺𝐹(((22)2)2) → 𝐺𝐹((22)2), 

𝐺𝐹((22)2) → 𝐺𝐹(22), and 𝐺𝐹(22) → 𝐺𝐹(2), can be made 

using the irreducible polynomials of 𝑥2 + 𝑥 + 𝜆, 𝑥2 + 𝑥 + 𝜑 

and 𝑥2 + 𝑥 + 1, respectively. As shown in Fig. 1, the output 

of the S-box, i.e., Y, is obtained using the affine 

transformation after inverse transformation (δ-1) [27]. The S-

box is composed of the multiplications, squaring, and 

inversion all of which are over 𝐺𝐹((22)2). Besides these 

arithmetic blocks, the S-box includes modulo-2 addition that 

is realized by XOR gates (see Fig. 1). Considering this figure, 

the output of the S-box can be formulated as follows: 

𝜎ℎ = ((𝜉ℎ + 𝜉𝑙)𝜉𝑙 + 𝜉ℎ
2𝜆)−1𝜉ℎ (2) 

𝜎𝑙 = ((𝜉ℎ + 𝜉𝑙)𝜉𝑙 + 𝜉ℎ
2𝜆)−1(𝜉ℎ + 𝜉𝑙) (3) 

where ξ and σ are the input and output of the multiplicative 

inversion, respectively. It is also worth mentioning that we 

have used the proposed architecture for different parts of the 

S-box, i.e., adder and multiplier in [28]. 

3. PROPOSED FAULT CORRECTION STRUCTURE  

(FC-DMR) 

3.1. FC-DMR 

We propose a correction technique in the DMR 

implementation of a digital circuit (FC-DMR) depicted in 

Fig. 2. The proposed FC-DMR protects the operation of both 

combinational and sequential parts of a digital circuit in each 

pipeline stage. Fig. 2 depicts an instance pipeline stage i in 

the intended circuit. As depicted in this figure, our FC-DMR 

consists of the following elements:  

- Pipeline Logici (original): a part of the system’s 

combinational logic utilized to process data in the 

original mode in the ith pipeline stage. 

- Pipeline Logici (redundant): a redundant copy of the 

original ith pipeline stage utilized to process data in the 

redundant mode in the ith pipeline stage. 

- Register stagei: the register or sequential part of the ith 

pipeline including DMR register and two DMR voters 

to preserve the correct state in the presence of a fault.  

- DU: the fault detection unit, which is actually 

implemented using a comparator must provide the 

output error signal erri, which indicates differences in 

the DMR register in the ith pipeline stage occur. 

- CU: the control unit producing Err, which is a general 

error signal and indicates fault occurrence in the system 

(any pipeline stage), i.e., a fault is detected. 

The input of each pipeline stage is processed by the 

pipeline logic and its redundant unit.  

 

Fig. 1: Composite field-based S-box architecture. 

 

 

Fig. 2: The proposed fault correction technique in DMR implementation (FC-DMR). 
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The corresponding output of the original and redundant 

pipeline logic units are stored in the register stages, i.e., 

pipeline register1 and pipeline register2, respectively. If the 

register’s contents are identical, no fault is detected. 

Otherwise, the comparator CMPi’s output in DUi, i.e., erri, 

will be activated. Two DMR voters are employed to protect 

both combinational and sequential part of the system. The 

proposed technique can correct any transient fault that occurs 

in a single S-box. When a fault is detected in any pipeline 

stage components, either in the logic stages, in the pipeline 

registers, or in the DU, the CU will reset its output, i.e., Err, 

and later it will prevent loading the incorrect state on the 

output of DMR voters.  

Hence, the pipeline logics process the previous correct 

state till the fault effect disappears. When the fault effect 

disappears, the next correct state is processed without any 

problem. This solution may put a negligible delay overhead 

on the critical path due to the comparison and voting.  

3.2. Proposed Voter 

The employed voter does the two tasks of a majority 

voter in the DMR technique, i.e., holding the previous state 

when facing a mismatch and changing the vote signal’s value 

when both modules produce the same output (Fig. 3). 

In fact, when the outputs of the two replicas are not the 

same as each other, which means an error has occurred, the 

voter holds the previous value until the two replicas’ outputs 

become similar. Besides, our design has a delay module that 

is useful if the comparator faces a mismatch. This delay 

makes it possible to affect the enable signals. Enables are 

provided to control internal wires not to send the faulty 

signals to voter’s output, which means that the pipeline stage 

is unchanged until the correct value gains and the sequence in 

our pipeline design remains unaffected. 

3.3. HFS-box 

The main contribution of this paper is proposing high-

throughput fault-attack resistant hardware implementations 

of S-box.  

We propose a full pipeline implementation of S-box in 

the composite field approach, which leads to the reduction of 

the circuit critical path. In fact, this solution enables us to 

enhance the frequency of clock signal in our proposed method 

and also makes it suitable for meeting the high-speed 

application requirements. 

The proposed pipeline S-box is depicted in Fig. 4. We 

place pipeline registers into this schema, which are illustrated 

by the dotted lines. As depicted in this figure, the proposed S-

box architecture (shown in Fig. 1) is divided into five stages. 

These pipeline registers are inserted into S-box architecture 

so that the critical path is optimally pipelined. This 

architecture is integrated with the proposed FC-DMR to 

achieve fault tolerance for any transient fault in both 

combinational and sequential parts in any pipeline stage of a 

single S-box, named HFS-box. In HFS-box, each DMR 

implementation of pipeline logic is lied between two register 

stages to check against fault occurrence, as depicted in Fig. 2. 

4. IMPLEMENTATION RESULT 

To evaluate the proposed HFS-box, we compare it with 

the TMR and TTR implementation of S-box, as traditional 

fault-tolerant structures with high fault correction capability. 

We report the synthesis result by using the TSMC 180 nm 

CMOS. We employ Verilog as the design entry description 

language and Synopsys DC as the synthesis tool. It should be 

noted the 8-bit SubByte operation is considered, so a single 

S-box is needed in each structure.  

 

 
Fig. 3: Proposed voter in gate level. 

 

 

 

Fig. 4: The architecture of the S-box with the 5-stage pipeline. 
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Table 1: Throughput, maximum frequency, area result. 

Design metric Original TMR TTR HFS-box 

Area 
GE 212.42 673.31 279.02 503.46 

% of area overhead - 216 31.35 137 

Freq. 
MHz 555 525 519 492 

% of reduction - -5.4 -6.4 -11.3 

Throuput 
Mbps 4440 4200 1384 3936 

% of reduction - -5.4 -68.8 -11.3 

Fault 

Tolerance 

Transition     

Permanent     

Security against fault attack     

 

In this section, the ASIC implementation results of all 

fault-tolerant S-box implementations are reported and 

compared. The design features that we consider include area, 

area overhead, frequency, and frequency overhead. Table 1 

presents the implementation results of all fault resilient 

designs.  

In this table, we use (4) to calculate- the-cost overhead. 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝐶𝐹𝑇 − 𝐶O

𝐶O
 (4) 

where 𝐶O is the original implementation cost (area, frequency, 

throughput, etc.), and 𝐶𝐹𝑇  is the cost of the fault tolerant 

implementation. It can be seen that TTR has the lowest area 

overhead (44.5% and 58.54% reduction compared to HFS-

box and TMR, respectively) and, at the same time, lower 

throughput (64.83% and 67.04% worse than HFS-box and 

TMR, respectively). HFS-box requires about 503 NAND gate 

equivalences (GEs). Actually, it puts more area overhead than 

TTR but still is much better than TMR (25.22% better than 

TMR). However, TMR achieves the best throughput among 

all fault resilient architectures, its security and reliability 

against fault attacks is lower than our HFS-box, and also it 

puts much more area overhead on the original S-box than 

HFS-box.  

The security of TMR and TTR is overshadowed by the 

majority voter. In fact, the majority voter is a bottleneck for 

these traditional fault-tolerant schemes. There are many 

works focused on introducing fault-tolerant majority voter. 

But, we do not address them because those research works are 

out of the scope of this paper. In addition, according to the 

proposed structure for the voter, it can be seen that the 

proposed design can detect symmetric transient errors in a 

very short period. However, TMR and TTR configurations do 

not have such capability. So, the proposed HFS-box can offer 

a higher level of reliability and better security against fault 

attacks, as mentioned in Table 1. 

In fact, the proposed low-cost HFS-box can continue its 

proper task without a considerable negative impact on the 

system speed or even any traditional recovery scheme. It is a 

suitable fault-tolerant technique for resource-constrained 

applications that require a high level of security. 

5. CONCLUSION 

In this paper, we proposed a lightweight high-throughput 

fault-attack resistant architecture for composite field S-box 

implementation of AES, which consumes the largest space in 

AES, named HFS-box. The proposed fault-attack resistant 

technique is based on fault correction in DMR 

implementation (FC-DMR) combined with a temporal 

redundancy technique. It can correct transient faults, which 

may occur in S-box naturally or maliciously. Our solution is 

valid for any digital circuit implementation (especially block 

cipher hardware implementation) with different levels of 

pipelining. HFS-box uses five pipeline stages to meet the real-

time application requirements for speed and throughput. 

Indeed, we inserted pipeline registers in optimal places in the 

S-box architecture. Furthermore, we introduced a compatible 

DMR voter with our FC-DMR. The proposed HFS-box and 

two well-known methods with high fault-tolerant ability, i.e., 

TMR and TTR, were implemented on ASIC using TSMC 

180nm CMOS technology, and their area, frequency, and 

throughput were derived and reported. The synthesis results 

pointed out that the HFS-box had a low area overhead (137%) 

and low throughput degradation (11.3) compared with other 

fault-tolerant schemes. 
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