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Abstract: It is crucial to detect potential overlaps between any pair of the input reads and a reference genome in genome 

sequencing, but it takes an excessive amount of time, especially for ultra-long reads. Even though lots of acceleration 

designs are proposed for different sequencing methods, several crucial drawbacks impact these methods. One of these 

difficulties stems from the difference in read lengths that may take place as input data. In this work, we propose a new 

Race-logic implementation of the seed extension kernel of the BWA-MEM alignment algorithm. The first proposed 

method does not need reconfiguration to execute the seed extension kernel for different read lengths. We use 

MEMRISTORs instead of the conventional, complementary metal-oxide-semiconductor (CMOS), which leads to lower 

area overhead and power consumption. Also, we benefit from Field-Programmable Nanowire Interconnect Architecture 

as our matrix output resulting in a flexible output that bypasses the reconfiguration procedure of the system for reads 

with different lengths. Considering the power, area, and delay efficiency, we gain better results than other state-of-the-

art implementations. Consequently, we gain up to 22x speedup compared to the state-of-the-art systolic arrays, 600x 

speed up considering different seed lengths of the previous state-of-the-art proposed methods, at least 10x improvements 

in area overhead, and 105x improvements in power. 
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1. INTRODUCTION 

DNA sequencing is a laboratory technique used to 

determine the exact sequence of bases (A, C, G, and T) in a 

DNA molecule. The DNA base sequence carries the 

information a cell needs to assemble protein and RNA 

molecules. DNA sequence information is essential to 

scientists investigating the functions of genes [1]. Based on 

the recent research on genomic sequence alignment, various 

algorithms and specific designs improve the sequencing 

aligners' performance and energy consumption. We can put 

genomics in the category of big data science, and by growing 

technology, it is getting much bigger. The volume of 

produced data by genomics can be compared with three main 

big data generators [2]: 

I. astronomy: Over these decades, Astronomy is placed in 

the group of Big Data challenges. 

II. YouTube: There is a huge number of sharing stuff and 

videos that are created and shared on YouTube 

III. Twitter: Makes a lot of opportunities for new insights by 

mining more than 400 million messages that are sent 

every day. 

Table 1 [3] compares these four groups of data 

generators, showing how genomics is increasingly 

overcoming in the case of demanding data acquisition, 

storage, distribution, and analysis. 

The first step for most genomics applications is sequence 

alignment. Many reads of DNA strands have to be aligned 

against the reference genome, and the best alignment for each 

read is produced as output. There are a variety of sequence 

alignment tools such as: 

1. Bowtie [4] 

             Check for 
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Table 1: Comparison of four groups of Big Data in 2025 are shown in this Table [3].

Data Phase Astronomy Twitter YouTube Genomics 

Acquisition 25 zetta-bytes/year 
0.5-15 billion 

tweets/year 

500-900 million 

hours/year 
1 zetta-bases/year 

Storage 1 EB/year 1-17 PB/year 1-2 EB/year 2-40 EB/year 

Analysis 

In situ data 

 reduction 

Topic and sentiment 

mining 

Limited 

 requirement 

Heterogeneous data  

and analysis 

Real-time 

 processing 

Metadata  

analysis 
 

Variant calling, ~2 trillion central 

processing unit (CPU) hours 

Massive  

volumes 
  

All-pairs genome alignments, 

~10,000 trillion CPU hours 

Distribution 

Dedicated lines from 

antennae to  

server (600 TB/s) 

Small units of 

distribution 

Major component of 

modern user's bandwidth 

(10 MB/s) 

Many small (10 MB/s) and  

fewer massive (10 TB/s)  

data movement 

2. BWA [5] 

3. MAQ [6] 

4. SOAP [7] 

5. BWA-MEM [8] 

Consider the state that we want to find all local alignment 

using a dynamic programming approach as an example of the 

alignment algorithms. If we choose the Smith and Waterman 

algorithm [9], which uses O (nm) time for aligning a read of 

length n against a reference of length m, it can be concluded 

that the approach is too slow. 

For example, as the fastest sequencing, NGS takes about 

hours with a lot of memory usage to sequence an entire human 

DNA. Based on the [10] experimental results, aligning 1000 

characters as a read against the human genome will take more 

than 15 hours. 

In the case of actual application, we work with genes or 

chromosomes that are about a few thousand to a few hundred 

million lengths. If we align the whole human genome with the 

SW method, it will last for about some days to weeks. 

There are other algorithms like BLAST [11], which are 

heuristic methods. They are used to find local alignments very 

efficiently. Using BLAST takes 10-20 seconds to align a read 

of 1000 bp against the human genome [11]. 

Obviously, with these time-consuming calculations, 

general-purpose processors are not a good solution for 

executing these bioinformatics workloads. Thus, we need 

more parallel and specific hardware such as GPU or FPGA 

dedicated to massively accelerating the intensive 

computations and leading to large speedups. 

In this work, we accelerate the Smith-waterman-like 

algorithm with a race logic strategy based on memristor 

elements to speed up the execution time. The rest of this paper 

is organized as follows: We provide related works in section 

2. Our design contributions and details of our MEMRISTOR-

based design are discussed in Section 3. Section 4 evaluates 

the results, and finally, Section 5 concludes this article. 

2. RELATED WORKS 

We are experiencing exponential growth of experimental 

data and information in biology called data explosion [12]. 

One of the most valuable operations in Bioinformatics is 

DNA sequencing. Four nucleotides (A, C, G, T) make the 

foundation of the DNA sequences. Swapping these 

nucleotides causes alternate biochemical functions and 

products within the DNA. One of the most Severe 

computational parts of Bioinformatics is finding similarities 

between two DNA sequences called pairwise alignment. 

Different methods accomplish this for Biologists, which leads 

to different time consumption. The Smith-Waterman (SW) is 

one of the most accurate algorithms with high sensitivity 

degree but high computational time and high hardware 

resource usage. Consider that the complexity of SW is of 

quadratic order. The BLAST [13] and FASTA [14] are 

derivative methods of SW which do not lead to optimal 

solutions because of sensitivity loss but are significantly 

faster. Another dynamic programming method for comparing 

two macromolecules is the Needleman-Wunsch algorithm 

(NW) [15], which calculates the alignment score between two 

sequences based on the Levenshtein distance. There are 

different other efforts to reduce the computational time of 

different parts of the pairwise alignment algorithms. A 

custom ASIC implementation of a BioSCAN is introduced in 

[16], in which heuristic and very high-density implementation 

caused the high performance. A new method of information 

representation was proposed in [17] that performs 

computation by setting up logical race conditions in a circuit 

on ASIC platform and they achieved about 3x higher 

throughput at 5x lower power density. The authors in [18] 

evaluate SWIFOLD: A SW parallel implementation for long 

DNA sequences implemented on Intel core with OpenCL. 

They claim that their method increases better performance 

with higher resource consumption. In another work, in [19], 

a ReRAM-based process-in-memory architecture is designed 

to improve short read alignment throughput per Watt by 13×. 

Several techniques have been proposed to accelerate the SW 

inexact alignment algorithm. However, the seed extension 
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step of this algorithm makes it inherently a slow design. The 

authors provided a new 2-D technique regarding SW inexact 

alignment algorithm in which they have used fixed numbers 

for Match, Mismatch, and gap penalty [20]. The authors in 

[21] propose a new hardware accelerator in which the most 

incorrect candidate locations fill out with 130-fold speedup 

than software. There is a faster implementation of SW in [22] 

which achieves 2to8× performance improvement compared 

to other SIMD-based SW implementations. Also, intrinsic 

delay of the circuits edit-distance computation elements as in 

[23] was utilized to propose the ASAP accelerator based on 

the RACE-logic hardware acceleration presented in [17] for 

accelerating SW and NW algorithms on an ASIC platform. 

Their work leads to 200× speedup than an equivalent SW-C 

implementation. Some other works accelerated BWA-MEM 

genomic mapping algorithm on different platforms such as 

GPU and FPGA. BWA-MEM is a widely used algorithm to 

map genomic sequences onto a reference genome. This 

algorithm is composed of three main computational kernels 

[8]: 

I. SMEM Generation: This kernel is used to find seeds 

(sub-strings of the reads) that are likely mapping the 

read against the reference genome. There is a chance 

of generating several seeds with the variable length 

for each read [5]. This step is an exact-match-finding 

phase that uses the Burrows-Wheeler transform. For 

this work, seeds are at least nineteen characters and 

a maximum of 131. 

II. Seed Extension: This step is an inexact-matching 

step that executes chaining and extending seeds in 

two directions using an SW-like algorithm [9]. This 

part of the BWA-MEM algorithm finds the optimal 

local alignment by using a scoring system. 

III. Output Generation: In this step, the best alignment 

(i.e., with the highest score) is finalized and provided 

as the output in SAM format, if necessary. 

Note that the seed extension kernel used in BWA-MEM 

is different from the SW algorithm in two substantial ways 

(Table 2) [24]: (1) Non-zero initial values: The initial values 

in the first column and the first row depending on the 

alignment score of the seed found by the SMEM Generation 

kernel. (2) Additional output generation: Other than the local 

and global alignment scores, the exact location inside the 

similarity matrix and a maximum offset (indicating the 

distance from the diagonal at which a maximum score has 

been found) are also generated. 

The first accelerated implementation of BWA-MEM is 

presented in [24] with evaluating several FPGA-based 

systolic array architectures. Their implementation is 3× faster 

than the software-only execution. Another hardware 

acceleration of the BWA-MEM genomics short read mapping 

for longer read length is stated in [25]. The authors discussed 

accelerating the seed extension kernel of the BWA-MEM 

algorithm on a GPU accelerator and achieved up to 1.6× 

improvement compared to application-level execution time 

[26]. Power efficiency analysis of accelerated BWA-MEM 

implementations on heterogeneous computing platform 

against the software-only baseline system is studied in [27] 

by offloading the seed extension phase on an accelerator. 

Table 2: Profiling the BWA-MEM algorithm [24]. 

Kernel Execution 

time (%) 

Bound 

SMEM generation 56 Memory 

Seed extension 32 Computational 

Output generation 9 Memory 

Other 3 I/O 

 

A high-performance FPGA-based Seed Extension IP 

core is designed [28] for BWA-MEM DNA alignment that 

achieves 350× speedup than an Intel Core i5 general-purpose 

processor. Authors gain up to 14.5× speedup than the SW 

algorithm by :(a) Applying heuristics; (b) Processing MEMs, 

and (c) Extracting MEMs by using a bit-level parallel method 

[29]. It is considered that after all these works, the problem of 

memory accessory, area overhead, time, and power 

consumption of the alignment algorithms methods and 

implementations are still extremely problematic. Thus, we 

aimed these problems in our work, and by our suggested 

methods, improved all of the problems mentioned above. 

3. PROPOSED DESIGN 

This section describes the proposed method for filling the 

similarity matrix of the SW-based algorithm and shows how 

it can speed up time and reduce power consumption 

compared to state-of-the-art architectures. Besides, our 

method uses an unfixed length strategy that can leads to 

higher speedup due to it does not need to be reconfigured for 

different reads lengths. 

There is a new data representation that is used for a broad 

class of optimization problems which is called "race logic." 

This method can be used for the kind of problems that use 

dynamic programming algorithms to be solved. There are 

different implementations of race logic, such as synchronous 

and asynchronous, which we focus on synchronous type for 

our design. Race logic idea is based on the race conditions in 

a circuit to optimize computation in case of time. 

We designed an SW similarity matrix with the idea of the 

race logic design. Also, we use MEMRISTOR instead of 

conventional, complementary metal-oxide-semiconductor 

(CMOS), which leads to better performance. In addition, we 

considered Field-Programmable Nanowire Interconnect [30] 

Architecture as our matrix output. Significantly, we achieve 

lower power consumption and area overhead due to using a 

MEMRISTOR structure compared to the previous CMOS, 

ASIC, and FPGA structures mentioned in the results. 

Moreover, we gain lower delay as a result of 

I. Using MEMRISTOR structure that is using race 

logic strategy which leads to lower circuit delay. 

II. Utilization of FPNI as a flexible output that bypasses 

the system's reconfiguration procedure for reads 

with different lengths. 

3.1. Algorithm Description 

First, we describe the main idea of our design and show 

how it can lead to a proper answer to the SW-like matrix with 

performance improvement. As we know, the SW algorithm is 

a dynamic programming algorithm that can compute the 

alignment score (Levenshtein distance) of two reads and 
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partial-reference genome string with the Q, R length, 

respectively. For calculating the scoring alignment of these 

two strings, the algorithm constructs a matrix S that is a lattice 

of size IQ × IR (IQ, IR are the length of two strings). With the 

recursive equation, it can calculate the minimum edit distance 

between two strings. Notice that in the BWA-MEM 

algorithm, which is in our consideration for implementing our 

proposed design, the length of two strings is as same as each 

other, and we have a Square matrix in each solution. But its 

dimension may be different based on the length of the reads. 

We solve this problem by using FPNI as a flexible output of 

the circuit which helps us earn all the outputs of different 

matrix dimensions without any problem to change the circuit 

of any reconfigurations. 

( i 1 ,i 1 ) ( Match ,Miss match )

( i ,i ) ( i 1 ,i ) ( Gap )

( i ,i 1 ) ( Gap )

DP T

DP MIN DP T

DP T

  





 
 

  
  

 (1) 

where DP denotes the similarity matrix, 𝑇(𝑀𝑎𝑡𝑐ℎ,𝑀𝑖𝑠𝑠−𝑚𝑎𝑡𝑐ℎ) 

is the assigned score for when a match or a mismatch occurs 

(usually 0 for a match and a 2 for a mismatch [23]), and 𝑇(𝐺𝑎𝑝) 

is the gap penalty with the usual one value [23]. It is worth 

mentioning that Match is for a situation where two 

corresponding nucleotides are the same as each other, and 

Miss-match states that they are not the same. Notice that we 

can choose these parameters to optimize the accuracy of the 

alignment based on the structure of the sequences compared 

[31-33]. Besides, we use fixed penalties for the gap between 

nucleotides with the more commonly used value [33]. The 

above equation, which is representative of the SW similarity 

matrix local alignment, leads to finding the largest sub-string 

of R, which is mapped with string Q with the lowest 

Levenshtein distance (LD) (See [34,35] for more 

information). However, this method is accurate and yields 

optimal alignment with high computational complexity. To 

overcome this problem, we can replace the LD values in (1) 

with their equivalent propagation delays and use the delay-

based approach for addition and minimization. Accordingly, 

these two operations (addition and minimization) are 

necessary for recursive (1). 

We give some examples of how the addition and 

minimization operations can be modeled by the race logic 

strategy for more clearance (Fig. 1).  

Suppose that we have two signals (M and N) set to logic 

value '1' (inject a high signal) at different times. This time 

delay is representing the different values of these two signals. 

For example, consider that the signal M is set to '1' with a 

specific time delay (time delay = D1) that means the value of 

M is "D1" and the second signal is set after D2 second-time 

delay (time delay = D2) that mean N value is "D2". 

I. If we want to add these two values with each other, 

we can combine the circuit elements of M and N in 

series. That means the total propagation delay of the 

output results from adding "D1" with "D2". 

II. If we connect these two circuit elements to an OR 

gate, the signal that arrives first to OR gate emerges 

out of that. This structure is a Viewer of the 

minimization operator. Because both signals have  

 

 

Fig. 1: Computing with propagation delays: Delay-based 

proxy for the addition operator is a series connection, and 

the proxy for the min operator is the OR gate [23]. 

 

the '1' value and the signal which have less amount 

of delay, will arrive first to OR gate and make the 

output of this gate '1' earlier. 

III. For calculating the output value, we can place a 

counter at the end of our race logic design that serves 

as a decoder [23]. 

We can apply these delay-based computations to SW 

similarity matrix of LD calculation. So, the delay between the 

rising edge of the input signal in the lattice and its emergence 

at any element on the last row is the minimum score of the 

local alignment. 

3.2. Proposed Architecture 

Fig. 2 demonstrates our accelerated architecture. It 

includes some basic cells to easily implement the desired 

functionality and a routing network to access some predefined 

basic cells' output. More details about the different parts of 

our proposed architecture will be presented in the following: 

3.2.1. MEMRISTOR-element 

Memristors [36] are new two-terminal logical and 

scientific basis and fourth classical circuit elements like 

resistors, inductors, and capacitors. 

Memristors are changeable resistors that can be used for 

memory. In this case, the resistance will be stored as data. We 

can also use Memristive devices [37] in other applications 

such as logic and analogue circuits. 

We can refer to some points of using memristors instead 

of CMOS circuits in our race logic: 

I. With these devices, we can read and write data faster 

than CMOS circuits [38]. 

II. They are typically small devices. Hence, the CMOS 

circuits are usually bigger than the memristive-based 

circuits. 

III. Nonvolatility is the main feature of memristors and 

their compatibility with standard CMOS technology 

[39]. They are either ideal for FPGA-like 

applications. 

From above, we can conclude that memristive devices 

provide nonvolatile, dense, fast, and power efficiency to 

solving many major problems of the semiconductor devices. 
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Fig. 2: Accelerated architecture. 

 

Consider that we make a programmable design in which 

the user can set the corresponding delay of "match", 

"mismatch", and "gap" penalties. For example, when we 

know that the most nucleotide comparisons are Match, we can 

encode in how "match" delay has' 0' time delay, which 

ensures that large portions of our SW matrix are taken zero 

time to be explored. Different values for penalties help us to 

optimize the search time. 

3.2.2. Basic cells 

The schematic of our proposed cell is shown in Fig. 3. 

Accordingly, it includes three delay elements (DM, DI, DD) 

responsible for the mathematical operations of (1), 

respectively; a comparator/selector unit to compare the value 

of two nucleotides that are the inputs of each matrix cell and 

decides if Match or mismatch occurs, one local OR gate to 

implement the Min operation in (1), and one global OR gate 

to give us the flexibility of choosing output from different 

stages of the SW matrix. 

3.2.3. The comparator/selector unit 

This section includes several CMOS XNOR gates, and a 

memristor-based NAND gate to compare the "Ref" and Read" 

data. Also, the multiplexer controlled by the comparator 

stage's output defines the corresponding Match or mismatch 

penalty as its output. When the output value of the comparator 

becomes "0", this means the "Ref" data is equal to the "Read" 

data, and the proportional delay value for Match (which can 

be defined by the user in our design) goes out as output of the 

selector unit. The structure of our proposed 

comparator/selector unit is shown in Fig. 4. 

3.2.4. The delay element (DE) 

Delay elements are composed of: 

I. Three input wavefront, which is the representation 

of the input signals and are the results of the 

preceding DEs in grid 

II. Two corresponding nucleotides as input signals 

which have to be compared by the element 

III. Three input signals representing the (Match, 

Mismatch, Gap penalty) values 

IV. One output signal (global OR gate) which represent 

the output of the (1) (DP(i,i)) 

V. One output signal (local OR gate) which is designed 

to perform our desired flexible matrix output and 

used for local alignment. 

The propagated output wavefront of each DE is a delay 

signal considering the corresponding match, mismatch, and 

gap delay penalties. When the other DE's outputs or signal 

 

 

Fig. 3: Basic cell of our proposed design. 

 

 

Fig. 4: Comparator/selector unit. 

 

wavefront reaches an element, a delay is created based on the 

gap penalty specified for match/mismatch and gap penalty by 

propagating the signals through the memristors. The other 

advantage of our design is that it allows the user to program 

(i.e., dynamically set at runtime) the value of the Match, 

mismatch, and gap penalty based on the different applications 

and give the flexibility to use our approach in cases that 

merely require re-parameterization of the gap-penalties. The 

structure of our proposed delay element is shown in Fig. 5. It 

includes some delay elements to build different delays and a 

multiplexer to select the desired delay. As shown in Fig. 5, 

we have used memristors to implement the delay elements to 

reduce the area overhead. 

3.2.5. Local OR gate 

The local OR gate is used to make it possible to avoid 

unnecessary latency that is due to the variable input length. 

OR gate is a proxy for minimization operator, which emerges 

out the signal that arrives first at the gate. As shown in Fig. 6, 

to reduce the area overhead, we have used a memristor-based 

OR gate for this sake. 

3.2.6. Global OR gate 

The global OR gate is used to implement the 

minimization operation in (1). The structure of our proposed 

global OR gate is shown in Fig. 6. We have used a memristor-

based OR gate for this sake to reduce the area overhead. 
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Fig. 5: Delay element unit that includes some delay 

elements to build different delays and a multiplexer to select 

the desired delay. 

 

 

Fig. 6: Structure of memristor base OR gate in our design. 

 

3.2.7. The routing network 

Needleman and Wunsch [15] and Smith and Waterman 

[9] algorithms are well-known dynamic programming 

algorithms that lead to optimum global and local alignment 

of a read against the reference genome. A similarity matrix is 

filled in these approaches that have to find the local and global 

alignment score of reads against the corresponding reference 

sub-string [8]. Consider the practical scenario that read data 

has at most 150 base pairs (bp) for our comparison. Then we 

construct our similarity matrix with 131×131 dimension 

based on the BWA-MEM approach. We desire that the 

processing time of filling the similarity matrix kernel be 

independent of the read length but because of the fixed 

similarity matrix dimension, for shorter reads, we incur 

unnecessary latency. 

To avoid this unnecessary latency, we have to 

contemplate a method that can be flexible with different read 

lengths and get output ready from the desired dimensions of 

the similarity matrix. Therefore, we can omit the unnecessary 

latency, which is the reason for not traveling through the 

entire elements irrespective of their length. 

The original race logic design was demonstrated in 

simulation as an ASIC [14]. Even though this method has 

advantages in power consumption and substantial 

improvement in throughput in comparison of the state-of-the-

art systolic implementations, but it suffers from the following 

problems: 

I. The original race logic design uses conventional, 

complementary metal-oxide-semiconductor 

(CMOS) with size, power consumption, read and 

write time problems, and our approach. 

II. Traveling through the entire elements irrespective of 

their length with the fixed similarity matrix 

dimension design that incurs unnecessary latency for 

shorter read size. 

Our proposed accelerator is runtime-programmable for 

changing the input data size, which defines the size of the 

accelerator lattice. For this sake, we have used a nanowire-

based routing network which is inspired by the FPNI 

technique [30]. Field-programmable nanowire interconnect 

(FPNI) is a new hybrid structure with advantages that are 

mentioned below: 

I. high flexibility 

II. low fabrication cost 

By this technique, we can change the size of the 

accelerator lattice during the runtime according to the input 

data size. As shown in Fig.4, our proposed routing network 

includes some nanowires to access the output of some 

predefined basic cells and a selection unit controlled by the 

input data size to select the desired output. Each nanowire is 

connected through a "via" to the output of the local OR gate 

in the desired basic cell. 

4. RESULTS 

In this section, the simulation results of the proposed 

method will be compared with some well-known approaches. 

Performance of the mentioned methods is evaluated using 

several criteria such as area, delay, and power consumption. 

In Fig. 7, the numerical results of the proposed structure for 

delay parameter are compared with state-of-the-art systolic 

arrays and race logic design. In general, these are two of the 

best implementations of dynamic programming methods that 

achieve accuracy and speedup. Therefore, we compare our 

design to show the consummate performance of our work. 

More details about each of the evaluation criteria will be 

presented in the following. 

4.1. Area 

To compute the occupied area of the mentioned methods, 

we have used the transistor counting technique in 65nm 

technology. According to the presented results in Table 3, the  
 

Table 3: Occupied area of three methods in nm based on the 

transistor counting technique in 65nm technology 

Read Length Proposed Systolic Race logic 

1 8.51E+02 7.34E+04 9.18E+03 

2 3.40E+03 1.18E+05 2.09E+04 

4 1.36E+04 2.34E+05 7.31E+04 
 

 

Fig. 7: Latency of the proposed method compared to the 

state-of-the-art systolic array and race logic designs.
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4.2. Power Consumption 

occupied area of the proposed method is compared with two 

other methods, and the results show that we achieve up to 

10fold area improvement. 

4.3. Delay 

We need an electrical model of the nanowires, junctions, 

and CMOS components to calculate the delay of the proposed 

structure. For this sake, we have used the electrical model 

proposed in [40] for the FPNI structure. The electrical model 

for a simple circuit is shown in Fig. 8. Some of the model 

parameters such as closed junction resistance, the capacitance 

and resistance per unit length and geometry of the wires are 

also listed in Table 4 [40]. In this paper, we have used the 

HSpice tool to calculate the delay of the proposed structure. 

The presented results in Fig. 9 show how our design flaunts 

himself in case of fixed length matrix dimension 

implementation. 

Power consumption of the proposed structure is 

evaluated using the formula presented in [40]: 

2

dd

1
Dynamic power ANCV f

2
   (2) 

where A is the average 'activity' of a signal, N is the number 

of allocated nanowires, C is the capacitance of a single 

nanowire, Vdd is the supply voltage used by the CMOS, and f 

is the maximum clock frequency determined by timing 

analysis. To calculate the power consumption of the proposed  

 

Table 4: Experimental parameters for FPNI architecture 

[40] 

Parameter Description FPNI 30 nm 

Pnano Nanowire pitch 30 nm 

Wnano Nanowire width 15 nm 

Wpin Pin diameter 90 nm 

Wpinvar Pin size variation 20 nm 

Walign Alignment error 40 nm 

Wsep Pin/wire separation 15 nm 

Rclosed Closed junction resistance 24 K 

p On/off resistance ratio >200 

 Nanowire resistivity 8u cm 

 Nanowire length 7115 nm 

 Nanowire resistance 2.53 K 

 

structure, we have used the HSpice tool. According to the 

presented results in Fig. 10, we compare our design with 

systolic arrays and the race logic approach. Results show 

those designs are power-hungry compared to our memristor-

base design. 

5. CONCLUSION 

We present a new memristor-based SW matrix 

implementation that achieves more than six times speedup 

compared to the state-of-the-art race logic approach and 22 

 

 
(a)  

(b) 

 
(c) 

Fig. 8: (a) A signal with a fan-out of 2 (b) the implemented form by the nanowires (c) the electrical model [40]. 
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Fig. 9: Delay ratio of the proposed method, Systolic array, 

and race logic considering the fixed 131×131 SW matrix 

dimension in different read lengths. 

 

 

Fig. 10: Power consumption of our proposed design in 

comparison of Systolic arrays and race logic design. 

 

times speedup than the systolic arrays implementation. We 

show how our design gives this flexibility to get the matrix 

output depending on the different input dimensions without 

unnecessary latency. Our implementation achieves up to 600x 

speedup with considering the fixed 131×131 SW matrix 

dimension by testing different read lengths. We also achieved 

at least 10x improvements in area overhead and also 105x 

improvements in power. Furthermore, our approach can be 

more practical and optimum in presenting programmable 

penalty matches, which gives the initiative to change them 

based on the biological application. 
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