
J. Appl. Res. Electr. Eng., Vol. 1, No. 1, pp. 59-68, 2022 DOI: 10.22055/jaree.2021.36117.1016

Shahid Chamran

University of Ahvaz

Iranian Association of

Electrical and Electronics

Engineers

Journal of Applied Research in Electrical Engineering

E-ISSN: 2783-2864

P-ISSN: 2717-414X

Homepage: https://jaree.scu.ac.ir/

Research Article

59

A High-Performance MEMRISTOR-Based Smith-Waterman DNA Sequence

Alignment Using FPNI Structure

Mahdi Taheri 1 , Hamed Zandevakili 2 , and Ali Mahani 2,∗

1 Department of Information and Communication Technology, Tallinn University of Technology, Tallinn 19086, Estonia

2 Reliable and Smart Systems Lab (RSS), Shahid Bahonar University of Kerman, Kerman 7616913439, Iran

* Corresponding Author: amahani@uk.ac.ir

Abstract: It is crucial to detect potential overlaps between any pair of the input reads and a reference genome in genome

sequencing, but it takes an excessive amount of time, especially for ultra-long reads. Even though lots of acceleration

designs are proposed for different sequencing methods, several crucial drawbacks impact these methods. One of these

difficulties stems from the difference in read lengths that may take place as input data. In this work, we propose a new

Race-logic implementation of the seed extension kernel of the BWA-MEM alignment algorithm. The first proposed

method does not need reconfiguration to execute the seed extension kernel for different read lengths. We use

MEMRISTORs instead of the conventional, complementary metal-oxide-semiconductor (CMOS), which leads to lower

area overhead and power consumption. Also, we benefit from Field-Programmable Nanowire Interconnect Architecture

as our matrix output resulting in a flexible output that bypasses the reconfiguration procedure of the system for reads

with different lengths. Considering the power, area, and delay efficiency, we gain better results than other state-of-the-

art implementations. Consequently, we gain up to 22x speedup compared to the state-of-the-art systolic arrays, 600x

speed up considering different seed lengths of the previous state-of-the-art proposed methods, at least 10x improvements

in area overhead, and 105x improvements in power.

Keywords: Bioinformatics, BWA-MEM, memristor, race logic.

Article history

Received 31 December 2020; Revised 27 April 2021; Accepted 27 May 2021; Published online 28 June 2021.

© 2021 Published by Shahid Chamran University of Ahvaz & Iranian Association of Electrical and Electronics Engineers (IAEEE)
How to cite this article

M. Taheri, H. Zandevakili, and A. Mahani, "A high-performance MEMRISTOR-based smith-waterman DNA sequence

alignment using FPNI structure," J. Appl. Res. Electr. Eng., vol. 1, no. 1, pp. 59-68, 2022.

DOI: 10.22055/jaree.2021.36117.1016

1. INTRODUCTION

DNA sequencing is a laboratory technique used to

determine the exact sequence of bases (A, C, G, and T) in a

DNA molecule. The DNA base sequence carries the

information a cell needs to assemble protein and RNA

molecules. DNA sequence information is essential to

scientists investigating the functions of genes [1]. Based on

the recent research on genomic sequence alignment, various

algorithms and specific designs improve the sequencing

aligners' performance and energy consumption. We can put

genomics in the category of big data science, and by growing

technology, it is getting much bigger. The volume of

produced data by genomics can be compared with three main

big data generators [2]:

I. astronomy: Over these decades, Astronomy is placed in

the group of Big Data challenges.

II. YouTube: There is a huge number of sharing stuff and

videos that are created and shared on YouTube

III. Twitter: Makes a lot of opportunities for new insights by

mining more than 400 million messages that are sent

every day.

Table 1 [3] compares these four groups of data

generators, showing how genomics is increasingly

overcoming in the case of demanding data acquisition,

storage, distribution, and analysis.

The first step for most genomics applications is sequence

alignment. Many reads of DNA strands have to be aligned

against the reference genome, and the best alignment for each

read is produced as output. There are a variety of sequence

alignment tools such as:

1. Bowtie [4]

 Check for

 updates

https://dx.doi.org/10.22055/jaree.2021.36117.1016
https://jaree.scu.ac.ir/
https://dx.doi.org/10.22055/jaree.2021.36117.1016
https://orcid.org/0000-0001-5405-992X
https://orcid.org/0000-0002-0472-0246
https://orcid.org/0000-0003-4916-202X
https://dx.doi.org/10.22055/jaree.2021.36117.1016
https://dx.doi.org/10.22055/jaree.2021.36117.1016

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 1, pp. 59-68, 2022

60

Table 1: Comparison of four groups of Big Data in 2025 are shown in this Table [3].

Data Phase Astronomy Twitter YouTube Genomics

Acquisition 25 zetta-bytes/year
0.5-15 billion

tweets/year

500-900 million

hours/year
1 zetta-bases/year

Storage 1 EB/year 1-17 PB/year 1-2 EB/year 2-40 EB/year

Analysis

In situ data

 reduction

Topic and sentiment

mining

Limited

 requirement

Heterogeneous data

and analysis

Real-time

 processing

Metadata

analysis

Variant calling, ~2 trillion central

processing unit (CPU) hours

Massive

volumes

All-pairs genome alignments,

~10,000 trillion CPU hours

Distribution

Dedicated lines from

antennae to

server (600 TB/s)

Small units of

distribution

Major component of

modern user's bandwidth

(10 MB/s)

Many small (10 MB/s) and

fewer massive (10 TB/s)

data movement

2. BWA [5]

3. MAQ [6]

4. SOAP [7]

5. BWA-MEM [8]

Consider the state that we want to find all local alignment

using a dynamic programming approach as an example of the

alignment algorithms. If we choose the Smith and Waterman

algorithm [9], which uses O (nm) time for aligning a read of

length n against a reference of length m, it can be concluded

that the approach is too slow.

For example, as the fastest sequencing, NGS takes about

hours with a lot of memory usage to sequence an entire human

DNA. Based on the [10] experimental results, aligning 1000

characters as a read against the human genome will take more

than 15 hours.

In the case of actual application, we work with genes or

chromosomes that are about a few thousand to a few hundred

million lengths. If we align the whole human genome with the

SW method, it will last for about some days to weeks.

There are other algorithms like BLAST [11], which are

heuristic methods. They are used to find local alignments very

efficiently. Using BLAST takes 10-20 seconds to align a read

of 1000 bp against the human genome [11].

Obviously, with these time-consuming calculations,

general-purpose processors are not a good solution for

executing these bioinformatics workloads. Thus, we need

more parallel and specific hardware such as GPU or FPGA

dedicated to massively accelerating the intensive

computations and leading to large speedups.

In this work, we accelerate the Smith-waterman-like

algorithm with a race logic strategy based on memristor

elements to speed up the execution time. The rest of this paper

is organized as follows: We provide related works in section

2. Our design contributions and details of our MEMRISTOR-

based design are discussed in Section 3. Section 4 evaluates

the results, and finally, Section 5 concludes this article.

2. RELATED WORKS

We are experiencing exponential growth of experimental

data and information in biology called data explosion [12].

One of the most valuable operations in Bioinformatics is

DNA sequencing. Four nucleotides (A, C, G, T) make the

foundation of the DNA sequences. Swapping these

nucleotides causes alternate biochemical functions and

products within the DNA. One of the most Severe

computational parts of Bioinformatics is finding similarities

between two DNA sequences called pairwise alignment.

Different methods accomplish this for Biologists, which leads

to different time consumption. The Smith-Waterman (SW) is

one of the most accurate algorithms with high sensitivity

degree but high computational time and high hardware

resource usage. Consider that the complexity of SW is of

quadratic order. The BLAST [13] and FASTA [14] are

derivative methods of SW which do not lead to optimal

solutions because of sensitivity loss but are significantly

faster. Another dynamic programming method for comparing

two macromolecules is the Needleman-Wunsch algorithm

(NW) [15], which calculates the alignment score between two

sequences based on the Levenshtein distance. There are

different other efforts to reduce the computational time of

different parts of the pairwise alignment algorithms. A

custom ASIC implementation of a BioSCAN is introduced in

[16], in which heuristic and very high-density implementation

caused the high performance. A new method of information

representation was proposed in [17] that performs

computation by setting up logical race conditions in a circuit

on ASIC platform and they achieved about 3x higher

throughput at 5x lower power density. The authors in [18]

evaluate SWIFOLD: A SW parallel implementation for long

DNA sequences implemented on Intel core with OpenCL.

They claim that their method increases better performance

with higher resource consumption. In another work, in [19],

a ReRAM-based process-in-memory architecture is designed

to improve short read alignment throughput per Watt by 13×.

Several techniques have been proposed to accelerate the SW

inexact alignment algorithm. However, the seed extension

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 1, pp. 59-68, 2022

61

step of this algorithm makes it inherently a slow design. The

authors provided a new 2-D technique regarding SW inexact

alignment algorithm in which they have used fixed numbers

for Match, Mismatch, and gap penalty [20]. The authors in

[21] propose a new hardware accelerator in which the most

incorrect candidate locations fill out with 130-fold speedup

than software. There is a faster implementation of SW in [22]

which achieves 2to8× performance improvement compared

to other SIMD-based SW implementations. Also, intrinsic

delay of the circuits edit-distance computation elements as in

[23] was utilized to propose the ASAP accelerator based on

the RACE-logic hardware acceleration presented in [17] for

accelerating SW and NW algorithms on an ASIC platform.

Their work leads to 200× speedup than an equivalent SW-C

implementation. Some other works accelerated BWA-MEM

genomic mapping algorithm on different platforms such as

GPU and FPGA. BWA-MEM is a widely used algorithm to

map genomic sequences onto a reference genome. This

algorithm is composed of three main computational kernels

[8]:

I. SMEM Generation: This kernel is used to find seeds

(sub-strings of the reads) that are likely mapping the

read against the reference genome. There is a chance

of generating several seeds with the variable length

for each read [5]. This step is an exact-match-finding

phase that uses the Burrows-Wheeler transform. For

this work, seeds are at least nineteen characters and

a maximum of 131.

II. Seed Extension: This step is an inexact-matching

step that executes chaining and extending seeds in

two directions using an SW-like algorithm [9]. This

part of the BWA-MEM algorithm finds the optimal

local alignment by using a scoring system.

III. Output Generation: In this step, the best alignment

(i.e., with the highest score) is finalized and provided

as the output in SAM format, if necessary.

Note that the seed extension kernel used in BWA-MEM

is different from the SW algorithm in two substantial ways

(Table 2) [24]: (1) Non-zero initial values: The initial values

in the first column and the first row depending on the

alignment score of the seed found by the SMEM Generation

kernel. (2) Additional output generation: Other than the local

and global alignment scores, the exact location inside the

similarity matrix and a maximum offset (indicating the

distance from the diagonal at which a maximum score has

been found) are also generated.

The first accelerated implementation of BWA-MEM is

presented in [24] with evaluating several FPGA-based

systolic array architectures. Their implementation is 3× faster

than the software-only execution. Another hardware

acceleration of the BWA-MEM genomics short read mapping

for longer read length is stated in [25]. The authors discussed

accelerating the seed extension kernel of the BWA-MEM

algorithm on a GPU accelerator and achieved up to 1.6×

improvement compared to application-level execution time

[26]. Power efficiency analysis of accelerated BWA-MEM

implementations on heterogeneous computing platform

against the software-only baseline system is studied in [27]

by offloading the seed extension phase on an accelerator.

Table 2: Profiling the BWA-MEM algorithm [24].

Kernel Execution

time (%)

Bound

SMEM generation 56 Memory

Seed extension 32 Computational

Output generation 9 Memory

Other 3 I/O

A high-performance FPGA-based Seed Extension IP

core is designed [28] for BWA-MEM DNA alignment that

achieves 350× speedup than an Intel Core i5 general-purpose

processor. Authors gain up to 14.5× speedup than the SW

algorithm by :(a) Applying heuristics; (b) Processing MEMs,

and (c) Extracting MEMs by using a bit-level parallel method

[29]. It is considered that after all these works, the problem of

memory accessory, area overhead, time, and power

consumption of the alignment algorithms methods and

implementations are still extremely problematic. Thus, we

aimed these problems in our work, and by our suggested

methods, improved all of the problems mentioned above.

3. PROPOSED DESIGN

This section describes the proposed method for filling the

similarity matrix of the SW-based algorithm and shows how

it can speed up time and reduce power consumption

compared to state-of-the-art architectures. Besides, our

method uses an unfixed length strategy that can leads to

higher speedup due to it does not need to be reconfigured for

different reads lengths.

There is a new data representation that is used for a broad

class of optimization problems which is called "race logic."

This method can be used for the kind of problems that use

dynamic programming algorithms to be solved. There are

different implementations of race logic, such as synchronous

and asynchronous, which we focus on synchronous type for

our design. Race logic idea is based on the race conditions in

a circuit to optimize computation in case of time.

We designed an SW similarity matrix with the idea of the

race logic design. Also, we use MEMRISTOR instead of

conventional, complementary metal-oxide-semiconductor

(CMOS), which leads to better performance. In addition, we

considered Field-Programmable Nanowire Interconnect [30]

Architecture as our matrix output. Significantly, we achieve

lower power consumption and area overhead due to using a

MEMRISTOR structure compared to the previous CMOS,

ASIC, and FPGA structures mentioned in the results.

Moreover, we gain lower delay as a result of

I. Using MEMRISTOR structure that is using race

logic strategy which leads to lower circuit delay.

II. Utilization of FPNI as a flexible output that bypasses

the system's reconfiguration procedure for reads

with different lengths.

3.1. Algorithm Description

First, we describe the main idea of our design and show

how it can lead to a proper answer to the SW-like matrix with

performance improvement. As we know, the SW algorithm is

a dynamic programming algorithm that can compute the

alignment score (Levenshtein distance) of two reads and

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 1, pp. 59-68, 2022

62

partial-reference genome string with the Q, R length,

respectively. For calculating the scoring alignment of these

two strings, the algorithm constructs a matrix S that is a lattice

of size IQ × IR (IQ, IR are the length of two strings). With the

recursive equation, it can calculate the minimum edit distance

between two strings. Notice that in the BWA-MEM

algorithm, which is in our consideration for implementing our

proposed design, the length of two strings is as same as each

other, and we have a Square matrix in each solution. But its

dimension may be different based on the length of the reads.

We solve this problem by using FPNI as a flexible output of

the circuit which helps us earn all the outputs of different

matrix dimensions without any problem to change the circuit

of any reconfigurations.

(i 1 ,i 1) (Match ,Miss match)

(i ,i) (i 1 ,i) (Gap)

(i ,i 1) (Gap)

DP T

DP MIN DP T

DP T

 (1)

where DP denotes the similarity matrix, 𝑇(𝑀𝑎𝑡𝑐ℎ,𝑀𝑖𝑠𝑠−𝑚𝑎𝑡𝑐ℎ)

is the assigned score for when a match or a mismatch occurs

(usually 0 for a match and a 2 for a mismatch [23]), and 𝑇(𝐺𝑎𝑝)

is the gap penalty with the usual one value [23]. It is worth

mentioning that Match is for a situation where two

corresponding nucleotides are the same as each other, and

Miss-match states that they are not the same. Notice that we

can choose these parameters to optimize the accuracy of the

alignment based on the structure of the sequences compared

[31-33]. Besides, we use fixed penalties for the gap between

nucleotides with the more commonly used value [33]. The

above equation, which is representative of the SW similarity

matrix local alignment, leads to finding the largest sub-string

of R, which is mapped with string Q with the lowest

Levenshtein distance (LD) (See [34,35] for more

information). However, this method is accurate and yields

optimal alignment with high computational complexity. To

overcome this problem, we can replace the LD values in (1)

with their equivalent propagation delays and use the delay-

based approach for addition and minimization. Accordingly,

these two operations (addition and minimization) are

necessary for recursive (1).

We give some examples of how the addition and

minimization operations can be modeled by the race logic

strategy for more clearance (Fig. 1).

Suppose that we have two signals (M and N) set to logic

value '1' (inject a high signal) at different times. This time

delay is representing the different values of these two signals.

For example, consider that the signal M is set to '1' with a

specific time delay (time delay = D1) that means the value of

M is "D1" and the second signal is set after D2 second-time

delay (time delay = D2) that mean N value is "D2".

I. If we want to add these two values with each other,

we can combine the circuit elements of M and N in

series. That means the total propagation delay of the

output results from adding "D1" with "D2".

II. If we connect these two circuit elements to an OR

gate, the signal that arrives first to OR gate emerges

out of that. This structure is a Viewer of the

minimization operator. Because both signals have

Fig. 1: Computing with propagation delays: Delay-based

proxy for the addition operator is a series connection, and

the proxy for the min operator is the OR gate [23].

the '1' value and the signal which have less amount

of delay, will arrive first to OR gate and make the

output of this gate '1' earlier.

III. For calculating the output value, we can place a

counter at the end of our race logic design that serves

as a decoder [23].

We can apply these delay-based computations to SW

similarity matrix of LD calculation. So, the delay between the

rising edge of the input signal in the lattice and its emergence

at any element on the last row is the minimum score of the

local alignment.

3.2. Proposed Architecture

Fig. 2 demonstrates our accelerated architecture. It

includes some basic cells to easily implement the desired

functionality and a routing network to access some predefined

basic cells' output. More details about the different parts of

our proposed architecture will be presented in the following:

3.2.1. MEMRISTOR-element

Memristors [36] are new two-terminal logical and

scientific basis and fourth classical circuit elements like

resistors, inductors, and capacitors.

Memristors are changeable resistors that can be used for

memory. In this case, the resistance will be stored as data. We

can also use Memristive devices [37] in other applications

such as logic and analogue circuits.

We can refer to some points of using memristors instead

of CMOS circuits in our race logic:

I. With these devices, we can read and write data faster

than CMOS circuits [38].

II. They are typically small devices. Hence, the CMOS

circuits are usually bigger than the memristive-based

circuits.

III. Nonvolatility is the main feature of memristors and

their compatibility with standard CMOS technology

[39]. They are either ideal for FPGA-like

applications.

From above, we can conclude that memristive devices

provide nonvolatile, dense, fast, and power efficiency to

solving many major problems of the semiconductor devices.

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 1, pp. 59-68, 2022

63

Fig. 2: Accelerated architecture.

Consider that we make a programmable design in which

the user can set the corresponding delay of "match",

"mismatch", and "gap" penalties. For example, when we

know that the most nucleotide comparisons are Match, we can

encode in how "match" delay has' 0' time delay, which

ensures that large portions of our SW matrix are taken zero

time to be explored. Different values for penalties help us to

optimize the search time.

3.2.2. Basic cells

The schematic of our proposed cell is shown in Fig. 3.

Accordingly, it includes three delay elements (DM, DI, DD)

responsible for the mathematical operations of (1),

respectively; a comparator/selector unit to compare the value

of two nucleotides that are the inputs of each matrix cell and

decides if Match or mismatch occurs, one local OR gate to

implement the Min operation in (1), and one global OR gate

to give us the flexibility of choosing output from different

stages of the SW matrix.

3.2.3. The comparator/selector unit

This section includes several CMOS XNOR gates, and a

memristor-based NAND gate to compare the "Ref" and Read"

data. Also, the multiplexer controlled by the comparator

stage's output defines the corresponding Match or mismatch

penalty as its output. When the output value of the comparator

becomes "0", this means the "Ref" data is equal to the "Read"

data, and the proportional delay value for Match (which can

be defined by the user in our design) goes out as output of the

selector unit. The structure of our proposed

comparator/selector unit is shown in Fig. 4.

3.2.4. The delay element (DE)

Delay elements are composed of:

I. Three input wavefront, which is the representation

of the input signals and are the results of the

preceding DEs in grid

II. Two corresponding nucleotides as input signals

which have to be compared by the element

III. Three input signals representing the (Match,

Mismatch, Gap penalty) values

IV. One output signal (global OR gate) which represent

the output of the (1) (DP(i,i))

V. One output signal (local OR gate) which is designed

to perform our desired flexible matrix output and

used for local alignment.

The propagated output wavefront of each DE is a delay

signal considering the corresponding match, mismatch, and

gap delay penalties. When the other DE's outputs or signal

Fig. 3: Basic cell of our proposed design.

Fig. 4: Comparator/selector unit.

wavefront reaches an element, a delay is created based on the

gap penalty specified for match/mismatch and gap penalty by

propagating the signals through the memristors. The other

advantage of our design is that it allows the user to program

(i.e., dynamically set at runtime) the value of the Match,

mismatch, and gap penalty based on the different applications

and give the flexibility to use our approach in cases that

merely require re-parameterization of the gap-penalties. The

structure of our proposed delay element is shown in Fig. 5. It

includes some delay elements to build different delays and a

multiplexer to select the desired delay. As shown in Fig. 5,

we have used memristors to implement the delay elements to

reduce the area overhead.

3.2.5. Local OR gate

The local OR gate is used to make it possible to avoid

unnecessary latency that is due to the variable input length.

OR gate is a proxy for minimization operator, which emerges

out the signal that arrives first at the gate. As shown in Fig. 6,

to reduce the area overhead, we have used a memristor-based

OR gate for this sake.

3.2.6. Global OR gate

The global OR gate is used to implement the

minimization operation in (1). The structure of our proposed

global OR gate is shown in Fig. 6. We have used a memristor-

based OR gate for this sake to reduce the area overhead.

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 1, pp. 59-68, 2022

64

Fig. 5: Delay element unit that includes some delay

elements to build different delays and a multiplexer to select

the desired delay.

Fig. 6: Structure of memristor base OR gate in our design.

3.2.7. The routing network

Needleman and Wunsch [15] and Smith and Waterman

[9] algorithms are well-known dynamic programming

algorithms that lead to optimum global and local alignment

of a read against the reference genome. A similarity matrix is

filled in these approaches that have to find the local and global

alignment score of reads against the corresponding reference

sub-string [8]. Consider the practical scenario that read data

has at most 150 base pairs (bp) for our comparison. Then we

construct our similarity matrix with 131×131 dimension

based on the BWA-MEM approach. We desire that the

processing time of filling the similarity matrix kernel be

independent of the read length but because of the fixed

similarity matrix dimension, for shorter reads, we incur

unnecessary latency.

To avoid this unnecessary latency, we have to

contemplate a method that can be flexible with different read

lengths and get output ready from the desired dimensions of

the similarity matrix. Therefore, we can omit the unnecessary

latency, which is the reason for not traveling through the

entire elements irrespective of their length.

The original race logic design was demonstrated in

simulation as an ASIC [14]. Even though this method has

advantages in power consumption and substantial

improvement in throughput in comparison of the state-of-the-

art systolic implementations, but it suffers from the following

problems:

I. The original race logic design uses conventional,

complementary metal-oxide-semiconductor

(CMOS) with size, power consumption, read and

write time problems, and our approach.

II. Traveling through the entire elements irrespective of

their length with the fixed similarity matrix

dimension design that incurs unnecessary latency for

shorter read size.

Our proposed accelerator is runtime-programmable for

changing the input data size, which defines the size of the

accelerator lattice. For this sake, we have used a nanowire-

based routing network which is inspired by the FPNI

technique [30]. Field-programmable nanowire interconnect

(FPNI) is a new hybrid structure with advantages that are

mentioned below:

I. high flexibility

II. low fabrication cost

By this technique, we can change the size of the

accelerator lattice during the runtime according to the input

data size. As shown in Fig.4, our proposed routing network

includes some nanowires to access the output of some

predefined basic cells and a selection unit controlled by the

input data size to select the desired output. Each nanowire is

connected through a "via" to the output of the local OR gate

in the desired basic cell.

4. RESULTS

In this section, the simulation results of the proposed

method will be compared with some well-known approaches.

Performance of the mentioned methods is evaluated using

several criteria such as area, delay, and power consumption.

In Fig. 7, the numerical results of the proposed structure for

delay parameter are compared with state-of-the-art systolic

arrays and race logic design. In general, these are two of the

best implementations of dynamic programming methods that

achieve accuracy and speedup. Therefore, we compare our

design to show the consummate performance of our work.

More details about each of the evaluation criteria will be

presented in the following.

4.1. Area

To compute the occupied area of the mentioned methods,

we have used the transistor counting technique in 65nm

technology. According to the presented results in Table 3, the

Table 3: Occupied area of three methods in nm based on the

transistor counting technique in 65nm technology

Read Length Proposed Systolic Race logic

1 8.51E+02 7.34E+04 9.18E+03

2 3.40E+03 1.18E+05 2.09E+04

4 1.36E+04 2.34E+05 7.31E+04

Fig. 7: Latency of the proposed method compared to the

state-of-the-art systolic array and race logic designs.

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 1, pp. 59-68, 2022

65

4.2. Power Consumption

occupied area of the proposed method is compared with two

other methods, and the results show that we achieve up to

10fold area improvement.

4.3. Delay

We need an electrical model of the nanowires, junctions,

and CMOS components to calculate the delay of the proposed

structure. For this sake, we have used the electrical model

proposed in [40] for the FPNI structure. The electrical model

for a simple circuit is shown in Fig. 8. Some of the model

parameters such as closed junction resistance, the capacitance

and resistance per unit length and geometry of the wires are

also listed in Table 4 [40]. In this paper, we have used the

HSpice tool to calculate the delay of the proposed structure.

The presented results in Fig. 9 show how our design flaunts

himself in case of fixed length matrix dimension

implementation.

Power consumption of the proposed structure is

evaluated using the formula presented in [40]:

2

dd

1
Dynamic power ANCV f

2
 (2)

where A is the average 'activity' of a signal, N is the number

of allocated nanowires, C is the capacitance of a single

nanowire, Vdd is the supply voltage used by the CMOS, and f

is the maximum clock frequency determined by timing

analysis. To calculate the power consumption of the proposed

Table 4: Experimental parameters for FPNI architecture

[40]

Parameter Description FPNI 30 nm

Pnano Nanowire pitch 30 nm

Wnano Nanowire width 15 nm

Wpin Pin diameter 90 nm

Wpinvar Pin size variation 20 nm

Walign Alignment error 40 nm

Wsep Pin/wire separation 15 nm

Rclosed Closed junction resistance 24 K

p On/off resistance ratio >200

 Nanowire resistivity 8u cm

 Nanowire length 7115 nm

 Nanowire resistance 2.53 K

structure, we have used the HSpice tool. According to the

presented results in Fig. 10, we compare our design with

systolic arrays and the race logic approach. Results show

those designs are power-hungry compared to our memristor-

base design.

5. CONCLUSION

We present a new memristor-based SW matrix

implementation that achieves more than six times speedup

compared to the state-of-the-art race logic approach and 22

(a)

(b)

(c)

Fig. 8: (a) A signal with a fan-out of 2 (b) the implemented form by the nanowires (c) the electrical model [40].

file:///C:/Users/Donyaye%20Computer/Desktop/New%20folder%20(2)/1016.docx%23R40

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 1, pp. 59-68, 2022

66

Fig. 9: Delay ratio of the proposed method, Systolic array,

and race logic considering the fixed 131×131 SW matrix

dimension in different read lengths.

Fig. 10: Power consumption of our proposed design in

comparison of Systolic arrays and race logic design.

times speedup than the systolic arrays implementation. We

show how our design gives this flexibility to get the matrix

output depending on the different input dimensions without

unnecessary latency. Our implementation achieves up to 600x

speedup with considering the fixed 131×131 SW matrix

dimension by testing different read lengths. We also achieved

at least 10x improvements in area overhead and also 105x

improvements in power. Furthermore, our approach can be

more practical and optimum in presenting programmable

penalty matches, which gives the initiative to change them

based on the biological application.

CREDIT AUTHORSHIP CONTRIBUTION STATEMENT

Mahdi Taheri: Conceptualization, Formal analysis,

Methodology, Resources, Roles/Writing - original draft,

Writing - review & editing. Hamed Zandevakili: Formal

analysis, Software, Writing - review & editing. Ali Mahani:

Project administration, Supervision, Writing - review &

editing.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper. The

ethical issues, including plagiarism, informed consent,

misconduct, data fabrication and/or falsification, double

publication and/or submission, redundancy, have been

completely observed by the authors.

REFERENCES

[1] M. Taheri, and A. Mahani, "Development and hardware

acceleration of a novel 2-D BWA-MEM DNA

sequencing alignment algorithm", in The First

Conference on Applied Research in Electrical

Engineering, Iran, 2021.

[2] J. Giles, "Computational social science: Making the

links", Nature, vol. 488, no. 7412, pp. 448-450, 2012.

[3] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C.

Zhai, M. J Efron, R. Iyer, M. C. Schatz, S. Sinha, and G.

E. Robinson, "Big data: astronomical or genomical?",

PLoS Biology, vol. 13, no. 7, 2015.

[4] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg.

"Ultrafast and memory-efficient alignment of short dna

sequences to the human genome", Genome Biology, vol.

10, no. 3, pp. 1-10, 2009.

[5] H. Li, and R. Durbin, "Fast and accurate short read

alignment with burrows– wheeler transform",

Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

[6] H. Li, J. Ruan, and R. Durbin, "Mapping short dna

sequencing reads and calling variants using mapping

quality scores", Genome Research, vol. 18, no. 11, pp.

1851– 1858, 2008.

[7] R. Li, C. Yu, Y. Li, T. Lam, S. Yiu, K. Kristiansen, and

J. Wang. "Soap2: an improved ultrafast tool for short

read alignment", Bioinformatics, vol. 25, no. 15, pp.

1966–1967, 2009.

[8] H. Li, "Aligning sequence reads, clone sequences and

assembly contigs with bwa-mem", arXiv preprint

arXiv:1303.3997, 2013.

 [9] T. .F Smith, M. S. Waterman, "Identification of

common molecular subsequences", Journal of

Molecular Biology, vol. 147, no. 1, pp. 195–197, 1981.

[10] T. W Lam, W. Sung, S. Tam, C. Wong, and S. Yiu,

"Compressed indexing and local alignment of dna",

Bioinformatics, vol. 24, no. 6, pp. 791– 797, 2008.

[11] W. J. Kent, "Blat—the blast-like alignment tool",

Genome Research, vol. 12, no. 4, pp. 656– 664, 2002.

[12] V. Marx, "Biology: The big challenges of big data", vol.

498, no. 7453, pp. 255-260, 2013.

[13] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang,

Z. Zhang, W. Miller, and D. J. Lipman, "Gapped blast

and psi-blast: a new generation of protein database

search programs", Nucleic Acids research, vol. 25, no.

17, pp. 3389–3402, 1997.

http://aree1.ir/papers/AREE1-ELTC-07.pdf
http://aree1.ir/papers/AREE1-ELTC-07.pdf
http://aree1.ir/papers/AREE1-ELTC-07.pdf
http://aree1.ir/papers/AREE1-ELTC-07.pdf
http://aree1.ir/papers/AREE1-ELTC-07.pdf
https://doi.org/10.1038/488448a
https://doi.org/10.1038/488448a
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
http://www.genome.org/cgi/doi/10.1101/gr.078212.108
http://www.genome.org/cgi/doi/10.1101/gr.078212.108
http://www.genome.org/cgi/doi/10.1101/gr.078212.108
http://www.genome.org/cgi/doi/10.1101/gr.078212.108
https://doi.org/10.1093/bioinformatics/btp336
https://doi.org/10.1093/bioinformatics/btp336
https://doi.org/10.1093/bioinformatics/btp336
https://doi.org/10.1093/bioinformatics/btp336
https://arxiv.org/abs/1303.3997
https://arxiv.org/abs/1303.3997
https://arxiv.org/abs/1303.3997
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1093/bioinformatics/btn032
https://doi.org/10.1093/bioinformatics/btn032
https://doi.org/10.1093/bioinformatics/btn032
http://www.genome.org/cgi/doi/10.1101/gr.229202
http://www.genome.org/cgi/doi/10.1101/gr.229202
https://doi.org/10.1038/498255a
https://doi.org/10.1038/498255a
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 1, pp. 59-68, 2022

67

[14] W. R. Pearson, and D. J. Lipman, "Improved tools for

biological sequence comparison", Proceedings of the

National Academy of Sciences, vol. 85, no. 8, pp. 2444–

2448, 1988.

[15] W. Wilbur, and D. J. Lipman, "The context dependent

comparison of biological sequences", SIAM Journal on

Applied Mathematics, vol. 44, no. 3, pp. 557–567, 1984.

[16] R. K. Singh, DL Hoffman, S. G. Tell, and C. Thomas

White, "Bioscan: a network sharable computational

resource for searching biosequence databases",

Bioinformatics, vol. 12, no. 3, pp.191–196, 1996.

[17] A. Madhavan, T. Sherwood, and D. Strukov, "Race

logic: A hardware acceleration for dynamic

programming algorithms", in 2014 ACM/IEEE 41st

International Symposium on Computer Architecture,

2014, pp. 517–528.

[18] E. Rucci, C. Garcia, G. Botella, A. De Giusti, M.

Naiouf, and M. Prieto-Matias, "Swifold: Smith-

waterman implementation on fpga with opencl for long

dna sequences", BMC systems biology, vol. 12, no. 5,

pp. 96, 2018.

[19] F. Zokaee, H. R Zarandi, and L. Jiang, "Aligner: A

process-in-memory architecture for short read

alignment in rerams," IEEE Computer Architecture

Letters, vol. 17, no. 2, pp. 237–240, 2018.

[20] M. Taheri, M. S. Ansari, S. Magierowski, and A.

Mahani, "Hardware acceleration of the novel two

dimensional burrows-wheeler aligner algorithm with

maximal exact matches seed extension kernel”, IET

Circuits, Devices and Systems, vol. 15, no. 2, pp. 94-

103, 2021.

[21] M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C.

Alkan, “Gatekeeper: a new hardware architecture for

accelerating pre-alignment in dna short read mapping”,

Bioinformatics, vol. 33, no. 21, pp. 3355–3363, 2017.

[22] M. Farrar, “Striped smith–waterman speeds database

searches six times over other simd implementations,”

Bioinformatics, vol. 23, no. 2, pp. 156–161, 2006.

[23] S. S. Banerjee, M. El-Hadedy, J. Bin Lim, Z. T.

Kalbarczyk, D. Chen, S. S Lumetta, and R K Iyer,

“Asap: accelerated short-read alignment on

programmable hardware”, IEEE Transactions on

Computers, vol. 68, no. 3, pp. 331–346, 2018.

[24] E. J. Houtgast, V. Sima, K. Bertels, and Z. Al-Ars, “An

fpga-based systolic array to accelerate the bwa-mem

genomic mapping algorithm”, in 2015 International

Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation (SAMOS),

2015, pp. 221–227.

[25] E. J. Houtgast, V. Sima, K. Bertels, and Z. Al-Ars,

“Hardware acceleration of bwa-mem genomic short

read mapping for longer read lengths”, Computational

biology and chemistry, vol. 75, pp. 54–64, 2018.

[26] E. J. Houtgast, V. Sima, K. Bertels, and Z. Al-Ars, “Gpu

accelerated bwa-mem genomic mapping algorithm

using adaptive load balancing”, in International

Conference on Architecture of Computing Systems,

2016, pp. 130– 142.

[27] E. J. Houtgast, V. Sima, G. Marchiori, K. Bertels, and

Z. Al-Ars, “Power-efficiency analysis of accelerated

bwa-mem implementations on heterogeneous

computing platforms”, in 2016 International

Conference on ReConFigurable Computing and FPGAs

(ReConFig), 2016, pp. 1–8.

[28] C. Pham-Quoc, B. Kieu-Do, and T. Ngoc Thinh, “A

high-performance fpga-based bwa-mem dna sequence

alignment”, Concurrency and Computation: Practice

and Experience, vol. 33, no. 2, e5328.

[29] A. Bayat, B. Gaëta, A. Ignjatovic, and S. Parameswaran,

“Pairwise alignment of nucleotide sequences using

maximal exact matches”, BMC bioinformatics, vol. 20,

no. 1, pp. 1-15, 2019.

[30] H. Zandevakili and A. Mahani, “A new asic structure

with self-repair capability using field-programmable

nanowire interconnect architecture”, IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol.

26, no. 11, pp. 2268–2278, 2018.

[31] C. Wang, R. Yan, Xi. Wang, Jing-Na Si, and Ziding

Zhang, “Comparison of linear gap penalties and profile-

based variable gap penalties in profile–profile

alignments”, Computational biology and chemistry, vol.

35, no. 5, pp. 308–318, 2011.

[32] S. Henikoff and J. G Henikoff, “Amino acid substitution

matrices from protein blocks”, Proceedings of the

National Academy of Sciences, vol. 89, no. 22, pp.

10915– 10919, 1992.

[33] W. Sung, “Algorithms in bioinformatics: A practical

introduction,” CRC Press, 2009.

[34] G. Navarro, “A guided tour to approximate string

matching”, ACM computing surveys (CSUR), vol. 33,

no. 1, pp. 31–88, 2001.

[35] V. I Levenshtein, “Binary codes capable of correcting

deletions, insertions, and reversals”, in Soviet physics

doklady, vol. 10, no.8, pp. 707–710, 1966.

[36] L. Chua, “Memristor-the missing circuit element”,

IEEE Transactions on circuit theory, vol. 18, no. 5, pp.

507–519, 1971.

[37] L. O. Chua, and S. Mo Kang, “Memristive devices and

systems”, Proceedings of the IEEE, vol. 64, no. 2, pp.

209–223, 1976.

[38] A. C Torrezan, J. Paul Strachan, G. Medeiros-Ribeiro,

and R S. Williams, “Sub-nanosecond switching of a

tantalum oxide memristor”, Nanotechnology, vol. 22,

no. 48, pp. 1-7, 2011.

[39] J. Borghetti, Z. Li, J. Straznicky, X. Li, D. AA Ohlberg,

W. Wu, D. R. Stewart, and R. S. Williams, “A hybrid

nanomemristor/transistor logic circuit capable of self-

programming”, Proceedings of the National Academy of

Sciences, vol. 106, no. 6, pp. 1699–1703, 2009.

[40] G. S. Snider, and R. S. Williams, “Nano/cmos

architectures using a fieldprogrammable nanowire

https://doi.org/10.1073/pnas.85.8.2444
https://doi.org/10.1073/pnas.85.8.2444
https://doi.org/10.1073/pnas.85.8.2444
https://doi.org/10.1073/pnas.85.8.2444
https://doi.org/10.1137/0144038
https://doi.org/10.1137/0144038
https://doi.org/10.1137/0144038
https://doi.org/10.1093/bioinformatics/12.3.191
https://doi.org/10.1093/bioinformatics/12.3.191
https://doi.org/10.1093/bioinformatics/12.3.191
https://doi.org/10.1093/bioinformatics/12.3.191
https://doi.org/10.1109/ISCA.2014.6853226
https://doi.org/10.1109/ISCA.2014.6853226
https://doi.org/10.1109/ISCA.2014.6853226
https://doi.org/10.1109/ISCA.2014.6853226
https://doi.org/10.1109/ISCA.2014.6853226
https://doi.org/10.1186/s12918-018-0614-6
https://doi.org/10.1186/s12918-018-0614-6
https://doi.org/10.1186/s12918-018-0614-6
https://doi.org/10.1186/s12918-018-0614-6
https://doi.org/10.1186/s12918-018-0614-6
https://doi.org/10.1109/LCA.2018.2854700
https://doi.org/10.1109/LCA.2018.2854700
https://doi.org/10.1109/LCA.2018.2854700
https://doi.org/10.1109/LCA.2018.2854700
https://doi.org/10.1049/cds2.12005
https://doi.org/10.1049/cds2.12005
https://doi.org/10.1049/cds2.12005
https://doi.org/10.1049/cds2.12005
https://doi.org/10.1049/cds2.12005
https://doi.org/10.1049/cds2.12005
https://doi.org/10.1093/bioinformatics/btx342
https://doi.org/10.1093/bioinformatics/btx342
https://doi.org/10.1093/bioinformatics/btx342
https://doi.org/10.1093/bioinformatics/btx342
https://doi.org/10.1093/bioinformatics/btl582
https://doi.org/10.1093/bioinformatics/btl582
https://doi.org/10.1093/bioinformatics/btl582
https://doi.org/10.1109/TC.2018.2875733
https://doi.org/10.1109/TC.2018.2875733
https://doi.org/10.1109/TC.2018.2875733
https://doi.org/10.1109/TC.2018.2875733
https://doi.org/10.1109/TC.2018.2875733
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1016/j.compbiolchem.2018.03.024
https://doi.org/10.1016/j.compbiolchem.2018.03.024
https://doi.org/10.1016/j.compbiolchem.2018.03.024
https://doi.org/10.1016/j.compbiolchem.2018.03.024
https://doi.org/10.1007/978-3-319-30695-7_10
https://doi.org/10.1007/978-3-319-30695-7_10
https://doi.org/10.1007/978-3-319-30695-7_10
https://doi.org/10.1007/978-3-319-30695-7_10
https://doi.org/10.1007/978-3-319-30695-7_10
https://doi.org/10.1109/ReConFig.2016.7857181
https://doi.org/10.1109/ReConFig.2016.7857181
https://doi.org/10.1109/ReConFig.2016.7857181
https://doi.org/10.1109/ReConFig.2016.7857181
https://doi.org/10.1109/ReConFig.2016.7857181
https://doi.org/10.1109/ReConFig.2016.7857181
https://doi.org/10.1002/cpe.5328
https://doi.org/10.1002/cpe.5328
https://doi.org/10.1002/cpe.5328
https://doi.org/10.1002/cpe.5328
https://doi.org/10.1186/s12859-019-2827-0
https://doi.org/10.1186/s12859-019-2827-0
https://doi.org/10.1186/s12859-019-2827-0
https://doi.org/10.1186/s12859-019-2827-0
https://doi.org/10.1109/TVLSI.2018.2856083
https://doi.org/10.1109/TVLSI.2018.2856083
https://doi.org/10.1109/TVLSI.2018.2856083
https://doi.org/10.1109/TVLSI.2018.2856083
https://doi.org/10.1109/TVLSI.2018.2856083
https://doi.org/10.1016/j.compbiolchem.2011.07.006
https://doi.org/10.1016/j.compbiolchem.2011.07.006
https://doi.org/10.1016/j.compbiolchem.2011.07.006
https://doi.org/10.1016/j.compbiolchem.2011.07.006
https://doi.org/10.1016/j.compbiolchem.2011.07.006
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1073/pnas.89.22.10915
https://www.routledge.com/Algorithms-in-Bioinformatics-A-Practical-Introduction/Sung/p/book/9780367659318
https://www.routledge.com/Algorithms-in-Bioinformatics-A-Practical-Introduction/Sung/p/book/9780367659318
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://www.bibsonomy.org/bibtex/220546d80ce76f58c6ef6ece9dd5f5056/jimregan
https://www.bibsonomy.org/bibtex/220546d80ce76f58c6ef6ece9dd5f5056/jimregan
https://www.bibsonomy.org/bibtex/220546d80ce76f58c6ef6ece9dd5f5056/jimregan
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1109/PROC.1976.10092
https://doi.org/10.1109/PROC.1976.10092
https://doi.org/10.1109/PROC.1976.10092
https://iopscience.iop.org/article/10.1088/09574484/22/48/485203
https://iopscience.iop.org/article/10.1088/09574484/22/48/485203
https://iopscience.iop.org/article/10.1088/09574484/22/48/485203
https://iopscience.iop.org/article/10.1088/09574484/22/48/485203
https://doi.org/10.1073/pnas.0806642106
https://doi.org/10.1073/pnas.0806642106
https://doi.org/10.1073/pnas.0806642106
https://doi.org/10.1073/pnas.0806642106
https://doi.org/10.1073/pnas.0806642106
https://doi.org/10.1088/0957-4484/18/3/035204
https://doi.org/10.1088/0957-4484/18/3/035204

M. Taheri et al. Journal of Applied Research in Electrical Engineering, Vol. 1, No. 1, pp. 59-68, 2022

68

interconnect”, Nanotechnology, vol. 18, no. 3, 035204,

2007.

BIOGRAPHY

Mahdi Taheri received the B. Sc.

degree in electronic engineering

from Khaje Nasir University of

Technology (KNTU), Tehran,

Iran, in 2017 and The M.Sc.

degree in Electronic Engineering

from Shahid Bahonar University

of Kerman, Kerman, Iran, in

2020. Since then, he has been with the RSS Lab at shahid

bahonar university of Kerman for one year, and now, he

is studying his Ph.D. at Tallinn University of Technology

(TalTech). His research interests focus on Hardware

assessment and reliability of neural networks, Fault-

tolerant design, and FPGA-based accelerators.

Hamed Zandevakili received an

M.S. degree in electronic

engineering from Shahid Bahonar

University, Kerman, Iran, in 2013.

Since September 2014, he has been

a Ph.D. student in the Department of

Electrical Engineering at Shahid

Bahonar University of Kerman,

Iran. His research interests include reliable computing,

VLSI testing, and reconfigurable computing.

Ali Mahani received the B. Sc.

degree in electronic engineering

from Shahid Bahonar University

of Kerman, Iran, in 2001, The

M.Sc. and Ph.D. degrees both in

Electronic engineering from Iran

University of Science and

Technology (IUST), Tehran, Iran, in 2003 and 2009

respectively. Since then he has been with the electrical

engineering department of shahid bahonar university of

kerman, where he is currently an associate professor. His

research interests focus on Fault tolerant design, FPGA-

based accelrators, approximate digital circuits, stochastic

computing and Networked Systems.

Copyrights
© 2021 Licensee Shahid Chamran University of Ahvaz, Ahvaz, Iran. This article is an open-access article distributed under

the terms and conditions of the Creative Commons Attribution –NonCommercial 4.0 International (CC BY-NC 4.0) License

(http://creativecommons.org/licenses/by-nc/4.0/).

https://doi.org/10.1088/0957-4484/18/3/035204
https://doi.org/10.1088/0957-4484/18/3/035204
http://creativecommons.org/licenses/by-nc/4.0/

