
J. Appl. Res. Electr. Eng., Vol. 1, No. 1, pp. 8-13, 2022  DOI: 10.22055/jaree.2020.34466.1010 

 
Shahid Chamran  

University of Ahvaz 

 

 
Iranian Association of 

Electrical and Electronics 

Engineers 

Journal of Applied Research in Electrical Engineering 
 

 

E-ISSN: 2783-2864 

P-ISSN: 2717-414X 

Homepage: https://jaree.scu.ac.ir/ 

 

 

Research Article 

 

8 

 

 

A Novel Design for an All-Optical Half Adder Using Linear Defects in Photonic 

Crystal Microstructure  

 

Saleh Naghizade 1 , and Hamed Saghaei 2,*  

1 Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz 5157-944533, Iran 

2 Department of Electrical Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord 8813-733395, Iran 

* Corresponding Author: h.saghaei@iaushk.ac.ir  

 

Abstract: This paper reports a new optical half-adder design using linear defects in a photonic crystal (PhC) structure. 

The half adder's proper design obviates the need to increase the input signal's intensity for the nonlinear optical Kerr 

effect's appearance, which leads to the diversion of the incoming light toward the desired output. The proposed device is 

composed of silicon rods consisting of four optical waveguides and a defect in a PhC. Two well-known plane wave 

expansion and finite difference time domain methods are used to study and analyze photonic band structure and light 

propagation inside the PhC, respectively. The numerical results demonstrate that the ON-OFF contrast ratios are 16 dB 

for “Sum” and about 14 dB for "Carry".  They also reveal that the proposed half-adder has a maximum time delay of 

0.8 ps with a total footprint of 158 µm2. Due to very low delay time, high contrast ratio, and small footprint, they are 

more crucial in modern optoelectronic technologies, so this structure can be used in the next generation of all-optical 

high-speed central processing units. 
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1. INTRODUCTION 

Photon-based devices have been the focus of researchers 

in recent decades due to their high processing speed, small 

area, and low power consumption. The design of optical 

communication systems based on high-speed devices is one 

of the aims of research groups so that it has been growing at 

a high speed in recent years [1–3]. The speed of information 

processing is critical in telecommunication networks. All-

optical logic-based devices are required for realizing a high-

speed processor. All-optical half adders are one of the 

important devices for implementing optical data processing 

systems because all four basic operations in mathematics, 

including addition, multiplication, subtraction, and division, 

can be done using optical half adders [4–8]. Photonic crystals 

(PhCs) play a vital role in all-optical systems [9,10]. Having 

photonic band gaps (PBGs) in a certain wavelength range 

enables them to confine and control the light propagation at 

the appropriate waveguides [11–13]. Therefore, many optical 

devices such as optical filters [14–18], PhC fibers [19–28], 

sensors [20], [29–31], demultiplexers [32–37], switches [13, 

38, 39], interferometers [40,41], logic gates such as NOT, 

AND, OR, NAND, encoders, and decoders [42–45], flip-

flops [46], comparators [47– 49], adders [50–52], and analog 

to digital converters (ADCs) [53–57] have been designed 

using this property of the PhCs. Recently, all-optical half 

adders have been designed and studied based on PhCs. Most 

of the previously proposed logic gates are classified into two 

main categories. The first structures are working based on 

nonlinear Kerr-effect, and the second ones are based on linear 

phase-difference. The structures based on the optical Kerr 

effect need high intensity of light in order to show the 

nonlinear optical Kerr effect. However, in this case, the 

structure is likely to be damaged due to the use of a high-

intensity input optical signal. Researchers have already 

presented different structures for half adders. Jiang et al. [8] 

proposed an all-optical half adder based on self-collimated 

beams in a 2D PhC. In the presented structure, two-line 

defects inside the structure were used to operate as a power 

splitter. Ghadrdan et al. [58] proposed a half adder in a 2D 

PhC by a combination of AND and XOR gates. Xavier et al. 

[59] presented a half adder in a 2D PhC where line defects 

and self-collimated beams were simultaneously used. The 

proposed structure consisted of AND and XOR logic gates. 
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Rahmani and Mehdizadeh [60] reported a new optical half-

adder design where three nonlinear ring resonators are used 

in a 2D PhC. The nonlinear resonators were created by adding 

some rods, composed of nonlinear material, to the ring 

resonator structure. The maximum rising time and falling 

time of the half adder were about 1.5 ps and 1 ps, respectively. 

Several optical half-adder and full-adder devices have been 

reported by other authors so far [7,44], [50–52], [61–63].  

This paper designs a linear phase-difference-based half-

adder structure with a low input optical power intensity of 1 

W/µm2. It has a good capability to separate logics 0 and 1 at 

the outputs. To confine light in the waveguides and defect 

region and propagate it as desired, we need wavelengths in 

the PBG of the PhC. Thus, the proposed structure is simulated 

at the c-band communication window (i.e., at 1550 nm). This 

half adder is characterized by a relatively large power 

difference between the two logical levels. It also has low 

delay time, low input power, and a small footprint, which 

reduces the error in high-speed data processing systems.  

2. THE PROPOSED PHYSICAL STRUCTURE 

Fig. 1 shows the symbol and truth table of a half adder. As 

can be observed in the figure, a half adder has two inputs and 

two outputs. X and Y are the input ports while the output ports 

are S and C, where S represents the "Sum" and C represents 

the "Carry". To design an all-optical half adder, we employ a 

21×21 array of dielectric rods composed of silicon arranged 

in a square lattice with an air background. The refractive 

index of the silicon rods is 3.46 at 1550 nm.  

The rods' radius is r=0.2a where a is the lattice constant (or 

pitch size) of the PhC structure, which is 600 nm in this study. 

We calculated the band diagram of the fundamental structure 

using the plane wave expansion (PWE) method [64]. Fig. 2 

illustrates that there are two PBGs in the TM polarization 

mode (the blue color areas).  

The first PBG in the TM mode that is 0.285<a/λ<0.418 has 

the appropriate wavelength range for our purposes. By 

choosing the lattice constant of a = 600 nm, the PBG will be 

at 1435nm<λ<2105nm, which completely covers the C-band 

communication window's wavelength range. 

For an all-optical half-adder design in a 21×21 array of 

dielectric rods, four optical waveguides and one resonant 

cavity are created in the determined regions of the PhC 

structure shown in Fig. 3. In fact, a combination of W1, W2, 

W3, and W4 waveguides with resonant cavity builds our 

optical half adder. The defect region contains ten folds of 

dielectric rods in which the radius of 9 folds (R1) is 60 nm. 

The radius of the last defect rod (R2) shown by yellow is 30 

nm. It is located at the input of W4. X and Y are the half 

adder's input ports at the beginning of W1 and W2, 

respectively. The end paths of W3 and W4 are the S and C 

ports of the proposed half adder.  

3. NUMERICAL RESULTS AND DISCUSSION 

To simulate the proposed structure, we employed the finite 

difference time domain (FDTD) method [65]. The use of a 3D 

simulation to study the proposed structure, which is very  

 

 
(a) 

 
(b) 

Fig. 1: An illustration of (a) block diagram and (b) truth 

table of an all-optical half adder. 

 
Fig. 2: The photonic band diagram of a fundamental square 

lattice PhC structure. 

 
Fig. 3: The proposed all-optical half-adder design in a 

21×21 array of dielectric rods consisting of four optical 

waveguides and one resonant cavity. 

time-consuming, requires a powerful computer [64]. Due to 

the time and memory constraints, the effective refractive 

index method is applied to reduce 3D simulations into 2D 

simulations with acceptable accuracy in this study [64]. The 

proposed half adder has two input ports, so we have four 

different input states. Therefore, we used light waves centered 

at 1550 nm at the input. All cases of the half adder are shown 

in Fig. 4 and classified as follows: 

Case #1: When both input ports (X and Y) are OFF, there 

is no optical power inside the structure, so both output ports 

(S and C) will be OFF (see Fig. 4a). 

Case #2 and #3: When one of the input ports (either X or 

Y) is ON, the resonant cavity will couple the optical beams  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4: Light propagation inside the proposed half adder for 

(a) Case #1 (b) Case #2, (c) Case #3, and (d) Case #4. 

into W3 due to wavelength matching between the resonant 

mode of the resonant cavity and the input signal. Therefore, 

in these cases, S will be ON, and C will be OFF (see Fig. 4b, 

and 4c). 

Case #4: When both input ports are ON, the resonant 

cavity will couple optical beams coming from W1 and W2 

into W4. Therefore, in this case, S will be OFF, and C will be 

ON (see Fig. 4c). 

By comparing the results with the truth table shown in Fig. 

1b, it is confirmed that the proposed structure can operate as 

an all-optical half adder. The normalized output of the 

proposed structure is shown in Fig. 5. As shown in Fig. 5a, 

when the input port of X is ON, the normalized intensities of 

the S and C ports are 75% and 5%, respectively. In this case, 

the time delay (steady-state time) is about 0.8 ps. Fig. 5b 

demonstrates that when the Y input port is ON, the 

normalized intensities of the S and C ports are 85% and 2%, 

respectively. In this case, the time delay is about 0.8ps. Fig. 

5c shows when both input ports are ON, the normalized 

intensities of the S and C ports are 2% and 125%, 

respectively. In this case, the time delay is about 0.7ps. The 

results show that our proposed structure has a shorter delay, a 

lower input intensity (equal to 1 W/µm2 because nonlinearity 

is not used), and a smaller footprint compared to previously  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 5: Normalized output power versus time of the 

proposed half adder for (a) Case #1 (b) Case #2 or #3, and 

(c) Case #4 
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Table 1: A comparison of the proposed half adder with 

other published papers. 

Works Method 

Min 

power for 

logic 1 

Max power 

for logic 0 

Time 

delay 
Footprint 

Ref. [8] 
Self-

collimation 
50% 7% - - 

Ref. [58] Nonlinear 81% 22% 0.85 ps 168 µm2 

Ref. [59] 
Self-

collimation 
73% 24% - 169 µm2 

Ref. [60] Nonlinear 100% 0% 1 ps - 

Ref. [7] Nonlinear 96% 4% 3.6 ps 250 µm2 

Ref. [44] Linear 71% 22% - - 

Ref. [61] Nonlinear 95% - 0.91 ps - 

Ref. [66] Linear 95% 19% 4 ps 1056 µm2 

Ref. [67] Linear 45% 19% 0.48 ps 171 µm2 

This work Linear 75% 5% 0.8 ps 158 µm2 

 

reported structures. Considering these results, the ON-OFF 

contrast ratios (10×log (PON/POFF)) for both S and C ports are 

16 dB and 14 dB, respectively. Also, according to the 

presented diagrams, the maximum time delay is about 0.8 ps. 

We considered the time required for the output port to reach 

its steady-state as the delay time.  

Table 1 compares the proposed device performance with 

other published papers. 

4. CONCLUSION 

In this paper, we designed an ultrafast all-optical half 

adder based on a photonic crystal microstructure in an area of 

158 µm2. The photonic band diagram was calculated using 

the plane wave expansion method for TE and TM polarization 

modes. We also studied the light propagation in the device via 

the finite-difference time-domain method and calculated the 

outputs for different input ports' states. One of the most 

important advantages of our structure compared to similar 

studies was the non-use of high nonlinear dielectric rods, 

which eliminated the need to increase the input power to 

divert the incoming light emission to the desired output. 

Simulations revealed that the minimum transmission of logic 

1 and the maximum transmission of logic 0 are 4% and 75%, 

respectively. The calculations also demonstrated that the 

proposed half adder has a steady-state time of 0.8 ps due to 

its small area.  
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