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Abstract: In this paper, a photonic crystal structure composed of silicon rods is proposed for an all-optical 4*2 encoder. 

Four input ports are connected to two outputs port via the cross-connections. Different radii of rods as defects are placed 

in the cross-connection region for coupling the optical waves from the input waveguides to the desired outputs. The total 

size of the device is about 133 μm2. Plane-wave expansion and finite difference time domain methods are used to calculate 

the band diagram and simulation of the optical wave propagation inside the structure, respectively. The maximum rise 

time of the device for all possible states is just about 205 fs, which is less than one in the previous works. No need for a 

bias port and using the same power at input ports are other advantages of this work. The normalized output power 

margins for logic 0 and 1 are calculated by 2% and 34%, respectively. The simulation results demonstrate that the 

presented structure is capable of using in optical integrated circuits. 
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1. INTRODUCTION 

An ever-increasing demand for fast processing yields to 

excessive attention to optical communication processors and 

systems. High data transferring rate with a possibility for 

integration are the most dominant issues in designing all-

optical circuits [1, 2]. 

Photonic crystals (PhCs), which are periodic arrays of 

dielectric, are known as an appropriate medium for designing 

optical devices because of profitable characteristics, 

including scalability, the capability of integration, and wide 

wavelength range [3]. Besides, impressive features such as 

the photonic band gap (PBG), slow light, and super prism can 

enhance PhCs-based applications. Recently, researchers aim 

to design all-optical devices based on PhCs, and many 

attempts have been made. The various optical devices based 

on PhCs such as filters [4-6], demultiplexers [7-9], adders 

[10-12], flip-flops [13, 14], analog-to-digital converters [15-

17], decoders [18-20], and encoders [21-28] have been 

proposed. 

For optical circuits, multiple sharing among the 

waveguides occurs; thus, encoders are potentially required for 

communication and switching operations. Encoders include 

logic gates which produce output signals depending on their 

corresponding powers at input ports. Plenty of PhC-based 

structures have been proposed and designed for encoding 

operation. Lee et al. [21] have been presented a 4-to-2 

encoder based on the silicon rods with triangle arrangement 

in the air. This structure was constructed of Y-shaped 

waveguides and point defects. Although the normalized 

output power levels for logic 0 and 1 were 5 % and 98%, 

respectively, the large size of the structure was not applicable 

for integrated circuits. Another 4-to-2 encoder was proposed 

by Ouahab and Naoum [22] that consisted of both ring and 

cavity resonators and L-shape waveguides. They used the 

polystyrene defects among the silicon rods as nonlinear 

cavities. The normalized power levels for logic 0 and 1 were 

5% and 45%, respectively, and the size of the structure was 

reduced to 18.5×13 µm2 in comparison to Ref. [22]. 

Moniem [23] proposed a PhC-based encoder using the 

silicon rods with a square arrangement. The encoding 

operation was based on the NOR logic gate and four ring 

resonators. Unlike previously discussed researches, a time 

response analysis was reported. The rise time and the steady-

state time of the encoder were about 2 ps and 3.5 ps, 

respectively. Different optical intensities were used for input 
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and bias waves. Besides, the normalized power levels were 

not reported. So, the proposed encoder may not be suitable 

for coupling to other optical devices. Naghizadeh and 

Khoshsima [24] have presented a 4-to-2 encoder using OR 

logic gates and ring resonators. They claimed that the 

encoding operation was correct, but one of the output ports 

was not active for state 11. The normalized output power 

levels of logic 0 and 1 were 3% and 45%, respectively. The 

size of the structure was as large as 723 µm2, in comparison 

to other discussed works. Another similar structure was 

proposed by Mehdizadeh et al. [25], in which the calculated 

rise time was reduced to less than 1 ps in return for the large 

size of the structure, which was about 880 µm2. Moreover, the 

normalized output power levels of 5% and 27% were reported 

for logic 0 and 1, respectively. 

Gholamnezhad and Zavvari [26] proposed a different 

structure using GaAs rods with a square arrangement. There 

were two ring resonators and two bias ports in this structure. 

The size of the encoder and the rise time were 744 µm2 and 1 

ps, respectively. The normalized output power margins were 

1% and 60% for logic 0 and 1, respectively. The radii of rods 

were reported about 123 nm, which seems to be a challenging 

issue considering semiconductor fabrication confinements. 

Another PhC-based encoder has been proposed by 

Hasangholizadeh-Kashtiban et al. [27] using the elliptical 

ring resonators and nonlinear rods. The radii of rods and 

minimum spacing were 106 nm and 100 nm, respectively, 

which may not be appropriate for semiconductor fabrication 

technology. 

Recently, a 4-to-2 encoder has been proposed by Seif-

dargahi [28]. In this structure, four ring resonators were 

designed, and the size of the device was 792 µm2. The 

normalized output power levels for logic 0 and 1 were 5% and 

42%, respectively. Although the rise time was almost similar 

to the previously discussed works, 1.8 ps, the steady-state 

time obtained for the structure was as long as 6 ps, which 

reduced the data transfer rate of the encoder. Therefore, the 

proposed structure may not be applicable for ultra-fast 

processing systems. 

As discussed, some attempts have been made to improve 

the output characteristics of PhC-based encoders such as rise 

time, size of the structure, and power margin of output states 

simultaneously. Besides, considering restrictions imposed by 

semiconductor fabrication technology, few structures may 

not be acceptable, even though the operation characteristics 

were improved. In this study, a new structure is presented 

using the cross-section waveguides, in which the encoding 

operation is achieved by altering the radii of defect rods and 

no optical bias requirement. The size of the structure is 

decreased to 133 µm2 in comparison with previous works [21, 

22, 24-28]. The rise time is successfully obtained by 205 fs 

that is less than one in the previous works mentioned earlier 

[23-26, 28]. Furthermore, the normalized output power 

margins are 1% and 34% for logic 0 and 1, respectively. By 

comparing the operating characteristics of all reviewed 

encoders, it can be stated that the proposed structure can be 

potentially a proper candidate for being employed as a part of 

optical integrated circuits. 

The paper is organized as follows; in Section 2, the 

designed encoder is presented, and time and power  

 

 

Fig. 1: The band diagram of the fundamental structure. 

analysis are investigated in Section 3. Finally, a conclusion of 

all the above features is presented in Section 4, and the 

proposed structure is being evaluated. 

2. ALL-OPTICAL 4-TO-2 ENCODER 

The fundamental structure consists of a two-dimensional 

22×22 square lattice of silicon rods in the air at X and Z 

directions. The refractive index and radii of the rods are 3.46 

and r=0.2a, where a is the lattice constant. Considering the 

period of 550 nm for this arrangement, the structure’s size 

will be about 133 µm2. The plane wave expansion method is 

used for the calculation of PBG [29]. In this method, 

Maxwell’s equations are defined as follows: 
1

𝜀𝑟
∇ × ∇ × 𝐸 = (

𝜔

𝑐
)
2

𝐸 (1) 

∇ ×
1

𝜀𝑟
∇ × 𝐻 = (

𝜔

𝑐
)
2

𝐻 (2) 

where εr is the relative permittivity, c is the speed of light 

in vacuum, and ω is the frequency of optical waves. Using 

Fourier series expansions for the fields, the eigenvalues (ω/c)2 

were obtained for the different wave vectors. As shown in 

Fig. 1, the structure has one photonic band gap, 0.33 

≤a/λ≤0.45, which is equal to the wavelength range of 1222 

nm≤λ≤1667 nm at TM mode. Because the C and L optical 

transmission bands are covered by this wide range, it is used 

for this work. So, the optical waves with the mentioned 

wavelength will not be propagated inside the structure. 

The next step is arranging the rods performing as the 

encoder. Four input waveguides are constructed by removing 

specific rows of rods, as depicted in Fig. 2a. These 

waveguides are labeled as W0 to W3. The structure is 

completed by two couplers, consist of three groups of rods. In 

Fig. 2b, the magnified view of the cross-section is presented. 

R1, R2, and R3 show the rods’ radii and are equal to 0.8r, 0.5r, 

and 0.75r, respectively, where r is the radius of the 

fundamental rods. To guide the wave through output ports O0 

and O1, two defects are placed at the right corners of W1 and 

W2 waveguides. Port N is placed to exit the optical waves 

injected from port I0. 
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(a) 

 
(b) 

Fig. 2: (a) The proposed structure for optical encoder (b) the 

magnified view for the cross-section. 

According to Bragg’s theory, the incident waves with the 

wavelength of λ and the reflected waves from the periodic 

bilayers are in phase if the equation nada+nbdb=λ/2 is satisfied, 

where na and nb are the refractive indices and da and db are the 

thickness of two layers. Considering the square lattice of the 

dielectric rods in the air gap, one rod and air gap are assumed 

as two different layers for the mentioned equation. To obtain 

the dropping operation at the same wavelength for the 

cavities, the left side of the mentioned equation should be kept 

in a constant value. So, changing the radii of the nonlinear 

rods assists to satisfy the equation. As a result, using the 

different radii in the structure makes the transmission 

operation toward the desired outputs. 

The working states of the structure have been shown in 

Table 1. At each time, only one of the inputs is active (at 

logic1), and other inputs are inactive (at logic 0). In 

corresponding to the input states, O1 in conjunction with O0 

generate the different binary codes. For example, O1=1 and 

O0=0 will be generated if I2 be equal to 1. When the input 

ports are not activated, no signal is guided toward the output 

ports O0 and O1 and results in O0=O1=0. Besides, for the 

working state I0=1, both output ports O0 and O1 will be also 

equal to 0. To distinguish two mentioned cases, port N has 

 

 

Table 1: The working states of the presented structure. 

Input States Output Port Port N 

I3 I2 I1 I0 O1 O0 

0 0 0 1 0 0 1 

0 0 1 0 0 1 0 

0 1 0 0 1 0 0 

1 0 0 0 1 1 0 

 

been placed in the structure. So, N=1 shows the proposed 

device works at I0=1 state. 

3. RESULTS 

In this research, RSoft Photonics CAD 8.2 has been used 

for simulation of the proposed structure. To simulate the 

optical wave propagation throughout the structure, the finite 

difference time domain method is used. In this method, 

Maxwell’s equations are discretised in space and time 

domains and components of the electric and magnetic fields 

are calculated. Also, the perfect matched layer (PML) is 

supposed to the boundary condition. 

The length of the cells (Δx and Δz) is equal to 0.25 nm which 

is less than λ/10 [30]. According to the Courant condition, the 

time step (Δt) should satisfy the following equation [30]: 

𝑐∆𝑡 <
1

√(
1
∆𝑥2

+
1
∆𝑧2

)

 (3) 

The time step of 0.029 fs is used for simulation. As 

shown in Table 1, the optical waves with λ=1550 nm 

launched at input ports considering the priority of four 

encoding states and the corresponding field distributions were 

shown in Fig. 3. Simulation of the structure demonstrates that 

the incoming optical waves from port I0 guide toward port N, 

so both O0 and O1 will be at logic 0 (Fig. 3a). As shown in 

Fig. 3b, the large portion of the launched signal at port I1 was 

coupled to port O0 and resulted in O0=1. One can see that 

port O1 will be activated when the optical waves come in port 

I2 (Fig. 3c). Using the mentioned defect silicon rods in the 

cross-section region results in the interferences in which the 

introduced signals from I1 and I2 are guided toward O0 and 

O1, respectively. Fig. 3d shows that the launched signal from 

port I3 reach to the cross-section and move toward both ports 

O0 and O1. In this state, two output ports will be activated. 

The correct encoding operation of the proposed structure 

was shown in Fig. 3, but as discussed previously, the time 

analysis of the proposed device should be essentially 

reported. In this work, the time that output power reaches 

90% steady-state value is defined as the rise time. The 

temporal behavior of the proposed encoder is demonstrated in 

Fig. 4, and the characteristics mentioned above are 

summarized in Table 2. 

For estimating the normalized output power levels of 

logic states, the worst cases should be considered. So, the 

minimum power level of all logic states 1 and the maximum 

power level of all logic states 0 are reported as the encoder’s 

margins. As can be inferred from Table 1, the normalized 

output power levels for logic 0 and 1 are 2% and 34%, 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

Fig. 3: The optical wave propagation throughout the 

structure for different input states in which only ports (a) I0, 

(b) I1, (c) I2, and (d) I3 are separately active. 

Table 2: The results of time analysis for the proposed device.  

Input logic states Output logic 

states 

Normalized 

output power 

(%) 

R
is

e 
ti

m
e 

(f
s)

 

I0 I1 I2 I3 N O1 O0 N O1 O0 

0 0 0 0 0 0 0 0 0 0 - 

1 0 0 0 1 0 0 100 0 0 115 

0 1 0 0 0 0 1 10 2 54 205 

0 0 1 0 0 1 0 0 52 2 205 

0 0 0 1 0 1 1 0 34 35 190 

 

     
 (a) 

 
(b) 

    
(c) 

 
(d) 

Fig. 4: The time response of the encoder when only input 

ports (a) I0, (b) I1, (c) I2, and (d) I3 are separately active. 
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Table 3: The main characteristics of the proposed structure 

in comparison with other works. 

Work Output 

power 

margin (%) 

Size 

(µm2) 

Rise 

time  

(fs) 

Regime 

[21] 5-98 - - Nonlinear 

[22] 5-45 757 - Nonlinear 

[23] - 1225 2000 Linear 

[24] 3-45 723 666 Linear 

[25] 5-27 880 1000 Linear 

[26] 1-60 744 1000 Nonlinear 

[27] 5-40 200 - Nonlinear 

[28] 5-42 792 1800 Linear 

This work 2-34 133 205 Linear 

 

respectively. Also, the rise time of the presented structure is 

205 fs. As the final assessment, challenging features of the 

proposed encoder are compared with the previously reported 

ones, and the results are summarized in Table 3.  

One can see that the output power margin is successfully 

increased, and the rise time and the size of the presented 

encoder are less than all reviewed ones [22-28]. In addition, 

there were two bias ports in the design proposed in [23], but 

in the presented encoder, no bias port will be needed. So, 

inevitable properties imposed by high optical intensities will 

be disappeared.  

Many attempts have been made for the fabrication of 

photonic crystal-based structures [31-40]. They have used 

different methods to fabricate these structures such as 

colloidal self-assembly, electron beam lithography, and direct 

writing via multiphoton microlithography. Based on these 

researches, they have been succeeded in decreasing the radius 

of rods to 75 nm. The smallest radius of rods in the presented 

structure is equal to 81 nm. So, one can be optimistic to 

fabricate the proposed device. Besides, the radii of 30 nm [41, 

42], 40 nm [12, 19], 44 nm [43], 45 nm [44], 53 nm [45], 60 

[46], and 70 nm [47] have been considered in photonic 

crystal-based structures for other works. According to the 

obtained results, the proposed structure is capable of using in 

optical integrated circuits. 

4. CONCLUSION 

In this study, a compact photonic crystal-based encoder 

was presented in which the different radii of rods assisted the 

optical coupling among the desired waveguides. The total 

size of the structure was equal to 133μm2, which was more 

compact than other works. The rise time of the presented 

devices was calculated about 205 fs that was smaller than one 

in all previous works, so it is proper for optical processing 

applications. Another advantage of the proposed devices is 

the encoding operation in the linear regime via using the 

linear rods. This issue makes the possibility of working in low 

input powers. Also, the input ports work at the same power, 

and no bias signal is needed. The margins for logic 0 and 1 

were obtained 2% and 34%, respectively. As a result, it seems 

that the presented encoder can be potentially used in optical 

integrated circuits. 
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