Volume 1, Issue 1 , January 2022
Abstract
This article briefly provides information about the Journal of Applied Research in Electrical Engineering (JAREE). It introduces the publisher, editorial board, aims and scope, indexing databases and social networks of the journal. In addition, the manner of manuscript submission to JAREE is described. ...
Read More
This article briefly provides information about the Journal of Applied Research in Electrical Engineering (JAREE). It introduces the publisher, editorial board, aims and scope, indexing databases and social networks of the journal. In addition, the manner of manuscript submission to JAREE is described. Finally, the table of contents of this issue is presented.
Volume 1, Issue 2 , July 2022
Abstract
This article briefly provides information about the Journal of Applied Research in Electrical Engineering (JAREE). It introduces the publisher, editorial board, aims and scope, indexing databases and social networks of the journal. In addition, the manner of manuscript submission to JAREE is described. ...
Read More
This article briefly provides information about the Journal of Applied Research in Electrical Engineering (JAREE). It introduces the publisher, editorial board, aims and scope, indexing databases and social networks of the journal. In addition, the manner of manuscript submission to JAREE is described. Finally, the table of contents of this issue is presented.
Volume 2, Issue 1 , January 2023
Abstract
This article briefly provides information about the Journal of Applied Research in Electrical Engineering (JAREE). It introduces the publisher, editorial board, aims and scope, indexing databases and social networks of the journal. In addition, the manner of manuscript submission to JAREE is described. ...
Read More
This article briefly provides information about the Journal of Applied Research in Electrical Engineering (JAREE). It introduces the publisher, editorial board, aims and scope, indexing databases and social networks of the journal. In addition, the manner of manuscript submission to JAREE is described. Finally, the table of contents of this issue is presented.
Volume 2, Issue 2 , July 2023
Abstract
This article briefly provides information about the Journal of Applied Research in Electrical Engineering (JAREE). It introduces the publisher, editorial board, aims and scope, indexing databases and social networks of the journal. In addition, the manner of manuscript submission to JAREE is described. ...
Read More
This article briefly provides information about the Journal of Applied Research in Electrical Engineering (JAREE). It introduces the publisher, editorial board, aims and scope, indexing databases and social networks of the journal. In addition, the manner of manuscript submission to JAREE is described. Finally, the table of contents of this issue is presented.
Volume 3, Issue 1 , January 2024
Abstract
This article briefly provides information about the Journal of Applied Research in Electrical Engineering (JAREE). It introduces the publisher, editorial board, aims and scope, indexing databases and social networks of the journal. In addition, the manner of manuscript submission to JAREE is described. ...
Read More
This article briefly provides information about the Journal of Applied Research in Electrical Engineering (JAREE). It introduces the publisher, editorial board, aims and scope, indexing databases and social networks of the journal. In addition, the manner of manuscript submission to JAREE is described. Finally, the table of contents of this issue is presented.
Volume 3, Issue 2 , July 2024
Abstract
This article briefly provides information about the Journal of Applied Research in Electrical Engineering (JAREE). It introduces the publisher, editorial board, aims and scope, indexing databases and social networks of the journal. In addition, the manner of manuscript submission to JAREE is described. ...
Read More
This article briefly provides information about the Journal of Applied Research in Electrical Engineering (JAREE). It introduces the publisher, editorial board, aims and scope, indexing databases and social networks of the journal. In addition, the manner of manuscript submission to JAREE is described. Finally, the table of contents of this issue is presented.
Electronics
Mohsen Makvandi; Mohammad Javad Maleki; Mohammad Soroosh
Abstract
In this paper, a photonic crystal structure composed of the silicon rods is proposed for an all-optical 4*2 encoder. Four input ports are connected to two outputs port via the cross-connections. Different radii of rods as defects are placed in the cross-connection region for coupling the optical waves ...
Read More
In this paper, a photonic crystal structure composed of the silicon rods is proposed for an all-optical 4*2 encoder. Four input ports are connected to two outputs port via the cross-connections. Different radii of rods as defects are placed in the cross-connection region for coupling the optical waves from the input waveguides to the desired outputs. The total size of the device is about 133 μm2. Plane-wave expansion and finite difference time domain methods are used to calculate the band diagram and simulation of the optical wave propagation inside the structure, respectively. The maximum rise time of the device for all possible states is just about 205 fs which is less than one in the previous works. No need to a bias port and using the same power at input ports are other advantages of this work. The normalized output power margins for logic 0 and 1 are calculated by 2% and 34%, respectively. The simulation results demonstrate the presented structure is capable of using in optical integrated circuits.
Control
Mats Leon Richter; Leila Malihi; Anne-Kathrin Patricia Windler; Ulf Krumnack
Abstract
The predictive performance of a neural network depends on the one hand on the difficulty of a problem, defined by the number of classes and complexity of the visual domain, and on the other hand on the capacity of the model, determined by the number of parameters and its structure. By applying layer ...
Read More
The predictive performance of a neural network depends on the one hand on the difficulty of a problem, defined by the number of classes and complexity of the visual domain, and on the other hand on the capacity of the model, determined by the number of parameters and its structure. By applying layer saturation and logistic regression probes, we confirm that these factors influence the inference process in an antagonistic manner. This analysis allows the detection of over- and under-parameterization of convolutional neural networks. We show that the observed effects are independent of previously reported pathological patterns, like the “tail pattern”. In addition, we study the emergence of saturation patterns during training, showing that saturation patterns emerge early in the optimization process. This allows for quick detection of problems and potentially decreased cycle time during experiments. We also demonstrate that the emergence of tail patterns is independent of the capacity of the networks. Finally, we show that information processing within a tail of unproductive layers is different, depending on the topology of the neural network architecture.
Power
Ramin Arjmandzadeh; Mahdi Banejad; Ali Akbarzadeh Kalat
Abstract
In conventional power systems, most of the power is produced by synchronous generators in the electric grid that have heavy and rotating rotors. As a result, there is an inherent inertia in the rotor of these generators. The presence of inertia in the grid prevents sudden frequency changes during imbalance ...
Read More
In conventional power systems, most of the power is produced by synchronous generators in the electric grid that have heavy and rotating rotors. As a result, there is an inherent inertia in the rotor of these generators. The presence of inertia in the grid prevents sudden frequency changes during imbalance situations, thus, the frequency stability of the grid is maintained. Today, with the increase of renewable energy sources that are usually connected to the network by power electronic equipment. Such resources do not have rotating materials, therefore, the overall inertia of the grid decreases and the stability of the system deteriorates. To solve the problem of lack of inertia in the power electronic-based grid, the notion of the virtual synchronous generator (VSG) technology has been introduced in recent years. This technology can imitate the behavior of traditional synchronous generators for inverters connected to the grid. In this way, the inverters connected to the grid act like a synchronous generator during imbalance. One of the problems associated with the converters-based microgrid is the existence of DC deviations and additional harmonics, which disrupt the work of the converters. Therefore, in this article, a third-order generalized integrator (TOGI) -based VSG for grid-connected inverters is employed so that the system stability is maintained in the conditions of additional harmonics and DC deviation. To show the effectiveness of the proposed method, time domain simulations have been performed in Simulink/MATLAB software. The results of the simulation verify the performance of the proposed method.
Power
Asaad Shemshadi; Mohammad Reza Khojaste
Abstract
One type of electrical breakdown in solid insulation is electromechanical failure. In mineral processing, crushing rocks is energy-intensive. Rock crushing using high voltage has many advantages, including high stone-breaking efficiency, and is a new and efficient way to break the stone. The shape of ...
Read More
One type of electrical breakdown in solid insulation is electromechanical failure. In mineral processing, crushing rocks is energy-intensive. Rock crushing using high voltage has many advantages, including high stone-breaking efficiency, and is a new and efficient way to break the stone. The shape of the electrode, the amount of applied voltage, and the selection of drilling process parameters are the main obstacles to using this method. In this study, based on the equivalent circuit of high voltage electro pulse failure, a mathematical model of high voltage electro pulse discharge in rock has been developed. Then, a high-voltage simulation model is developed based on the coaxial cylindrical electrode structure. This paper investigates the use of electromechanical failure phenomena for crushing minerals. High voltage pulses are used to crush the rock, then by simulating the relevant circuit, the necessary voltage for crushing three minerals is obtained and the feasibility of using this method is discussed. Finally, using the simulation and the obtained results, the possibility of using this method for crushing minerals has been investigated. This study provides a scientific basis for quantifying and predicting rock crushing using high-voltage technology to improve drilling efficiency and reduce energy loss.
Electronics
Reza Ghanavati; Yousef Seifi Kavian; Abdolnabi Kosarian
Abstract
The ever-increasing threat of air pollution as a serious health hazard throughout the world requires measuring prior to devising a structured solution. Air quality monitoring systems measure the amount of particulate matter such as particles and hazardous gases in the air. Information is required on ...
Read More
The ever-increasing threat of air pollution as a serious health hazard throughout the world requires measuring prior to devising a structured solution. Air quality monitoring systems measure the amount of particulate matter such as particles and hazardous gases in the air. Information is required on the quality of air monitoring and dust detection system in order to make managerial decisions to improve environmental conditions and prevent and treat diseases caused by dust. The present study aims to develop a simple, highly sensitive, and economical monitoring system for the determination of air particulate. In this paper, we develop a real-time ad hoc wireless airborne particle monitoring system using the IEEE 802.15.4 low power sensor network technology called RTWSM, featuring a low-cost sensor node for mass production. Its dynamic features of high scalability and ad hoc architecture enable the design to provide significantly more useful information under all environments, including indoor or outdoor monitoring applications. The performance of the proposed monitoring sensor system is evaluated in environmental and industrial occupation debates to monitor the PM2.5 particle data. The results confirm that the proposed experimental setup works well for local air pollution monitoring and could be extended to automation industrial applications.
Power
Babak Keshavarz Zahed; Mohammad Hassan Moradi
Abstract
The penetration of double-fed induction generators (DFIG) as renewable energy sources (RES) in power systems leads to fluctuations caused by wind energy. Therefore, based on this challenge, a wide area damping controller (WADC) has been designed to compensate the oscillatory modes by a static synchronous ...
Read More
The penetration of double-fed induction generators (DFIG) as renewable energy sources (RES) in power systems leads to fluctuations caused by wind energy. Therefore, based on this challenge, a wide area damping controller (WADC) has been designed to compensate the oscillatory modes by a static synchronous series compensator (SSSC). In addition to the design of WADC for SSSC, a parallel compensator in the form of a supercapacitor energy storage system (SCESS) has been used in the DC link of the wind unit so that DFIG can be used optimally to supply the power system. The design method for compensating time delays in WADC is based on free weight matrices (FWM). First, based on the theory of robust control based on delay-dependent feedback, a set of constraints related to linear matrix inequality (LMI) is formulated. In the following, the free weight matrix (FWM) has been used to solve the delay-dependent time problem. The purpose of applying FWM is to extract the most optimal gain for the controller in the presence of the time delay. The proposed FWM matrix tries to find the most optimal gain in the controller with the help of an iterative algorithm based on the linearization of the conical complement. The simulation results have been implemented in the MATLAB software environment after obtaining the critical modes in the nonlinear time domain on the power system of 16 improved machines. Based on the simulation results, the robustness of the proposed controller under various uncertainties is clearly shown in this paper.
Electronics
Saleh Naghizade; Hamed Saghaei
Abstract
This paper reports a new optical half-adder design using linear defects in a photonic crystal (PhC) structure. The half adder's proper design obviates the need to increase the input signal's intensity for the nonlinear optical Kerr effect's appearance, which leads to the diversion of the incoming light ...
Read More
This paper reports a new optical half-adder design using linear defects in a photonic crystal (PhC) structure. The half adder's proper design obviates the need to increase the input signal's intensity for the nonlinear optical Kerr effect's appearance, which leads to the diversion of the incoming light toward the desired output. The proposed device is composed of silicon rods consisting of four optical waveguides and a defect in a PhC. Two well-known plane wave expansion and finite difference time domain methods are used to study and analyze photonic band structure and light propagation inside the PhC, respectively. The numerical results demonstrate that the ON-OFF contrast ratios are 16 dB for “Sum” and about 14 dB for "Carry". They also reveal that the proposed half-adder has a maximum time delay of 0.8 ps with a total footprint of 158 µm2. Due to very low delay time, high contrast ratio, and small footprint, they are more crucial in modern optoelectronic technologies, so this structure can be used in the next generation of all-optical high-speed central processing units.
Power
Ali Morsagh Dezfuli; Mahyar Abasi; Mohammad Esmaeil Hasanzadeh; Mahmood Joorabian
Abstract
The utilization of distributed generation (DG) in today's power systems has led to the emergence of the concept of microgrids, in addition to changing the mode of generating and supplying the energy required for network electrical loads. When a microgrid operates in the island mode, energy generation ...
Read More
The utilization of distributed generation (DG) in today's power systems has led to the emergence of the concept of microgrids, in addition to changing the mode of generating and supplying the energy required for network electrical loads. When a microgrid operates in the island mode, energy generation sources are responsible for controlling the microgrid’s voltage and frequency. As the microgrid frequency is proportional to the amount of power generated by the DG, the microgrid requires a precise power-sharing strategy. Considering that DGs do not usually have stable output power despite the importance of power stability, the present paper addresses the voltage and frequency control of an islanded microgrid by considering the power generation uncertainties caused by disturbances and the varying power output of DGs. Given that the disturbance on the first DG's input current is 0.2 A, which is approximately 2.2% of the steady-state value, a simulation was performed, and it was observed that the maximum voltage variation of each bus in the worst case was 0.59% for the first bus and 0.53% for the second bus, which means that the controller could control the voltage and frequency values within the permissible range. If the controller is not used, the change in the frequency of each bus will be 10 times, and the voltage change will be 5 times as great as that of the case the controller is used.
Electronics
Shabnam Sadeghi; Ali Mahani
Abstract
The stochastic computing (SC) method is a low-cost alternative to conventional binary computing that processes digital data in the form of pseudo-random bit-streams in which bit-flip errors have a trivial effect on the signal final value because of the highly redundant encoding format of this method. ...
Read More
The stochastic computing (SC) method is a low-cost alternative to conventional binary computing that processes digital data in the form of pseudo-random bit-streams in which bit-flip errors have a trivial effect on the signal final value because of the highly redundant encoding format of this method. As a result, this computational method is used for fault-tolerant digital applications. In this paper, stochastic computing has been chosen to implement 2-dimensional discrete wavelet transform (2-D DWT) as a case study. The performance of the circuit is analyzed through two different faulty experiments. The results show that stochastic 2-D DWT outperforms binary implementation. Although SC provides inherent fault tolerance, we have proposed four structures based on dual modular redundancy to improve SC reliability. Improving the reliability of the stochastic circuits with the least area overhead is considered the main objective in these structures. The proposed methods are applied to improve the reliability of stochastic wavelet transform circuits. Experimental results show that all proposed structures improve the reliability of stochastic circuits, especially in extremely noisy conditions where fault tolerance of SC is reduced.
Power
Nicholas Kwesi Prah II; Elvis Twumasi; Emmanuel Asuming Frimpong
Abstract
The Combined Economic Emission Dispatch (CEED) is an important consideration in every power system. In this paper, a modified Mayfly Algorithm named Modified Individual Experience Mayfly Algorithm (MIE-MA) is used to solve the CEED optimization problem. The modified algorithm enhances the balance between ...
Read More
The Combined Economic Emission Dispatch (CEED) is an important consideration in every power system. In this paper, a modified Mayfly Algorithm named Modified Individual Experience Mayfly Algorithm (MIE-MA) is used to solve the CEED optimization problem. The modified algorithm enhances the balance between exploration and exploitation by utilizing a chaotic decreasing gravity coefficient. Additionally, instead of the MA relying solely on the best position, it calculates the experience of a mayfly by averaging its positions. The CEED problem is modeled as a nonlinear optimization problem constrained with four equality and inequality constraints and tested on a grid-connected microgrid that consists of four dispatchable distributed generators and two renewable energy sources. The performance of the MIE-MA on the CEED problem is compared to Particle Swarm Optimisation (PSO), an MA variant that incorporates a levy flight algorithm named IMA and Dragonfly Algorithm (DA) using the MATLAB R2021a software. The MIE-MA achieved the best optimum cost of 11306.6 $/MWh, compared to 12278.0 $, 12875.8$, and 17146.4$ of the DA, IMA, and PSO respectively. The MIE-MA also achieved the best average optimum cost over 20 runs of 12163.48 $, compared to 12555.36 $, 13419.67 $, and 17270.08 $ of the DA, IMA, and PSO respectively. The hourly cost curve of the MIE-MA was also the best compared to the other algorithms. The MIE-MA algorithm thus achieves superior optimal values with fewer iterations.
Power
Saeed Aminzadeh; Mehrdad Tarafdar Hagh; Heresh Seyedi
Abstract
This paper uses the coordination between the reactive power of a solid oxide fuel cell (SOFC) and a battery to control the frequency within an islanded microgrid. By this coordination, the microgrid frequency regulation becomes faster and better during contingencies. Moreover, the energy storage capacity, ...
Read More
This paper uses the coordination between the reactive power of a solid oxide fuel cell (SOFC) and a battery to control the frequency within an islanded microgrid. By this coordination, the microgrid frequency regulation becomes faster and better during contingencies. Moreover, the energy storage capacity, which is usually required for the frequency control of islanded microgrids, has significantly been reduced. Furthermore, there will be no need to consider reserve capacity in renewable sources for frequency control. Therefore, renewable energy sources can be operated at their maximum power point. Also, this paper introduces a new frequency-reactive power control concept and a related coefficient that shows the degree of dependence of the microgrid frequency on the injected reactive power changes at each bus. This coefficient determines the priority of buses for the installation of reactive power control devices to control the frequency of the microgrid. Simulation studies have been performed in the MATLAB/Simulink environment. The results show the applicability and accuracy of the proposed coefficient and demonstrate the effectiveness of the coordinated control of reactive power between the SOFC and the battery for frequency control.
Telecommunications
Patikiri Arachchige Don Shehan Nilmantha Wijesekara
Abstract
Network Virtualization (NV) techniques enable high scalability and isolation by abstracting physical resources to provide a logical network representation that can coexist with a physical networking framework. Traditional NV is prone to security attacks and has lower privacy and trustfulness compared ...
Read More
Network Virtualization (NV) techniques enable high scalability and isolation by abstracting physical resources to provide a logical network representation that can coexist with a physical networking framework. Traditional NV is prone to security attacks and has lower privacy and trustfulness compared to blockchain-established NV. We diagnose the BC-established NV construct under 5 segments and closely appraise the literature in reference to NV technique, virtualization technology, BC-related properties, and network properties. We racked up a starting sample of 85 sources by filtering literary work for qualifying conditions searched from article retrieval platforms, engaging a rigorous and prolonged approach. Anchored from this research, in BC-established NV, we demonstrate that BC can act as a broker/manager for NV, act as a secure storage by preventing double-spending attacks, provide secure virtual network embedding with high fault tolerance, engage BC and smart contacts for resource trading in the process of NV, engage dedicated consensus approaches to reach agreement for NV among multiple parties for reducing security attacks, and establish BC-established access control for NV. Complete interpretation disseminates that from interpreted BC-established NV schemes, 45% engage BC and smart contracts for agreements and resource trading for NV, 95% engage regular BC architecture, Proof-of-Work (PoW) and Practical Byzantine Fault Tolerance (PBFT) being the most frequently used consensus, 80% engage the overlay network concept, and it has been engaged abundantly (27.5%) in 5G networks. Finally, we deliberate the possibilities and obstacles of the framework of blockchain-established NV and then provide suggestions to suppress them.
Power
Hamid Radmanesh
Abstract
This paper presents a new algorithm for sizing equations of an Axial Flux Permanent Magnet (AFPM) machine based on an analytical method. To obtain a better performance, the dimensions of the stator and rotor cores are calculated. It is shown that the magnetic flux densities throughout these cores remain ...
Read More
This paper presents a new algorithm for sizing equations of an Axial Flux Permanent Magnet (AFPM) machine based on an analytical method. To obtain a better performance, the dimensions of the stator and rotor cores are calculated. It is shown that the magnetic flux densities throughout these cores remain closed to the flux density of the B-H curve knee point of the ferromagnetic material characteristics. A new algorithm is proposed to determine the dimensions of the different parts of the machine, and it is used to calculate the height of the permanent magnet precisely. To show the effectiveness of the suggested algorithm, a sample AFPM machine is designed based on sizing equations, and Finite Element Analysis (FEA) is employed to validate these design formulas. A complete simulation study is accomplished, and some of the results are presented to confirm the accuracy of the sizing equations.
Power
Ahmad Ghafari; Mohsen Saniei; Morteza Razzaz; Alireza Saffarian
Abstract
Increasing the penetration level of distributed generation (DG) units in radial power distribution systems can increase the short-circuit level in these networks, which can, in turn, have destructive effects such as exceeding the tolerable current of the equipment and disrupting the protective coordination ...
Read More
Increasing the penetration level of distributed generation (DG) units in radial power distribution systems can increase the short-circuit level in these networks, which can, in turn, have destructive effects such as exceeding the tolerable current of the equipment and disrupting the protective coordination in the network. The active superconducting fault current limiter (ASFCL) is a new device that can limit fault current using voltage series compensation. This paper discusses the modeling of ASFCL and control strategies including fault detection and converter performance in normal and fault modes. Initially, its performance in limiting the fault current is investigated by simulating a sample three-phase system with ASFCL. In the next step, three operating modes including normal mode, upstream fault mode, and downstream fault mode are proposed to achieve an adaptive FCL that solves these problems in grid-connected microgrids. The simulation results confirm the proper performance of the ASFCL modes in both fault current limiting and protective coordination of overcurrent relays in the network.
Power
Narges Yousefi; Mahmood Joorabian; Mahyar Abasi
Abstract
An obstacle in managing economic dispatch is the integration of diverse factors such as pollution and heat. By introducing the price penalty coefficient, this class of two-objective problems is transformable to a single-objective form. The formulation considers various practical constraints of the system, ...
Read More
An obstacle in managing economic dispatch is the integration of diverse factors such as pollution and heat. By introducing the price penalty coefficient, this class of two-objective problems is transformable to a single-objective form. The formulation considers various practical constraints of the system, including non-smooth cost functions, the balance of production, demand, and losses, and the limitation of power generation by active generators. One of the fundamental difficulties in tackling these types of complex problems lies in the algorithms and solvers employed to identify optimal solutions for a range of operation problems. The rain optimization algorithm (ROA) has been utilized in this paper. ROA is derived from the inherent tendency of raindrops to seek out the lowest areas on the earth's surface. This algorithm possesses exceptional efficacy in resolving problems characterized by stringent constraints and is adept at circumventing local optima. To validate the proposed method for cost and emission reduction, the scheme under consideration has been developed using software on standard systems. The implementation of the scenarios has revealed that the limits of the power system have led to a decrease in the overall generation cost of fossil fuel generation units. In this article, the ROA algorithm managed to plan the production with an optimal cost of 38481.54 dollars in case 1, which obtained a more optimal value than all the compared algorithms. This reduction in cost is considered one of the triumphs of the optimization problems. The results showcased and juxtaposed in the software simulation verify the effective performance of the suggested approach in comparison to prior research.
Telecommunications
Afshin Koliji; Sara Mihandoost; Nematollah Ezzati; Ehsan Mostafapour
Abstract
Sudden Cardiac Death (SCD) leads to the killing of millions of people worldwide every year. In this article, sudden cardiac death is predicted by utilizing electrocardiogram signal processing. For this purpose, after extracting the signal of heart rate variations from the electrocardiogram signal, temporal ...
Read More
Sudden Cardiac Death (SCD) leads to the killing of millions of people worldwide every year. In this article, sudden cardiac death is predicted by utilizing electrocardiogram signal processing. For this purpose, after extracting the signal of heart rate variations from the electrocardiogram signal, temporal and non-linear features have been extracted. In the next step, by applying LDA to the combined feature vector, the feature dimensions are reduced and finally, healthy people and high-risk people are classified through Hybrid-RBF classifiers. The obtained results show that there are features in the signal of heart rate variations related to risk-taking individuals near the occurrence of sudden cardiac death, that completely distinguish them from healthy persons. It has also been shown that from 6 minutes before the occurrence of cardiac death, this increase in the probability of risk is quite evident, so that as we get closer to the occurrence of the accident, the probability of its occurrence also increases, and this is enough time to adopt strategies to prevent it. The simulation results achieved by the data available in the MIT-BIH database prove the ability of the presented methods to achieve accurate diagnosis.
Telecommunications
Ali Eshkevari; Seyed Mohammad Sajad Sadough
Abstract
Direct Position Determination (DPD) is known as an optimal, single-step technique for localizing co-channel signal sources since it processes the data gathered from all the array receiver elements together. In contrast, the commonly used radio location techniques include two independent stages. First, ...
Read More
Direct Position Determination (DPD) is known as an optimal, single-step technique for localizing co-channel signal sources since it processes the data gathered from all the array receiver elements together. In contrast, the commonly used radio location techniques include two independent stages. First, they estimate some initial parameters like direction, time, time-difference, frequency of arrival, etc., or their combination, and second, they localize signal sources using the triangulation of loci generated by the first stage. This disjoint structure leads to the sub-optimality of conventional localization algorithms. In this paper, we compare the Location root-mean-square-Error Lower Bounds (LELB) for DPD and position finding by DOA (PF-DOA) to prove the superiority of DPD over PF-DOA, which are commonly used for tactical fields or outdoor applications. Moreover, we demonstrate the advantages of DPD for indoor localization applications compared to PF-DOA techniques in terms of localization accuracy. We also introduce the single-group-array (SGA) structure for DPD in indoor applications and reveal that it outperforms both the PF-DOA and DPD with a classical multi-group-array (MGA) structure.
Power
Iman Ali Hassanvand; Javad Ebrahimi; Mahyar Abasi
Abstract
The dominant measures taken in distribution networks to solve the voltage instability problem include feeder reconfiguration techniques, allocation of capacitor banks, use of tap changers, etc. However, these traditional methods suffer from numerous issues. Many studies have been carried out to solve ...
Read More
The dominant measures taken in distribution networks to solve the voltage instability problem include feeder reconfiguration techniques, allocation of capacitor banks, use of tap changers, etc. However, these traditional methods suffer from numerous issues. Many studies have been carried out to solve these problems in recent years. Compared with traditional methods, reactive power control (RPC) of photovoltaic (PV) inverters does not require additional investment, and given that PV inverters often function at a capacity below their rated value, the excess capacity can be utilized to assist in supplying reactive power to the grid. However, achieving voltage regulation in imbalanced distribution networks via RPC is a complex issue. Hence, the primary objective of this work is to utilize the reactive power capacity of photovoltaic inverters to achieve decentralized regulation of the effective voltage of the network using a consensus algorithm and a PID controller in two stages.
Power
Mahyar Abasi; Nima Heydarzadeh; Arash Rohani
Abstract
The phenomenon of broken conductor faults (BCFs) in power transmission lines and, consequently, the suspension of the hot-line with no connection to ground, tower, or other conductive/non-conductive bodies is amongst special faults in terms of fault detection and location in the protection industry. ...
Read More
The phenomenon of broken conductor faults (BCFs) in power transmission lines and, consequently, the suspension of the hot-line with no connection to ground, tower, or other conductive/non-conductive bodies is amongst special faults in terms of fault detection and location in the protection industry. Once such a failure occurs, the current of the faulty phase does not increase, which leads to the inability of standard fault detection functions in detecting the event. On the other hand, the variable nature of transmission line parameters due to weather conditions leads to misoperation and malfunction of fault detection and protection schemes of industrial relays in some cases. This paper, for the first time, presents a BCF location scheme without requiring line parameters data and only using magnitudes of current and voltage phasors of a single terminal based on Group Method of Data Handling (GMDH). In this method, a function is interpolated, the inputs of which are the current and voltage of the faulty phase, and its output are the accurate location of the fault. The function can be developed for all topologies of transmission lines. The proposed method is implemented in the MATLAB software and the obtained results verify the solidity and perfect performance of the method for different fault conditions.