Electronics
Mohsen Ghaemmaghami; Shahbaz Reyhani
Abstract
This article presents a tunable fourth-order band-pass filter that is designed using an operational trans-conductance amplifier (OTA), which can be used as an anti-aliasing filter (AAF) in the front-end of an analog-to-digital converter (ADC). It is necessary to use a suitable filter to prevent unwanted ...
Read More
This article presents a tunable fourth-order band-pass filter that is designed using an operational trans-conductance amplifier (OTA), which can be used as an anti-aliasing filter (AAF) in the front-end of an analog-to-digital converter (ADC). It is necessary to use a suitable filter to prevent unwanted signals from entering the ADC. The bandwidth of the AAF should be designed according to the bandwidth of the ADC, therefore, matching these two bandwidths is one of the important challenges when using multi-bandwidth analog to digital converters in digital communication applications. The proposed band-pass filter is designed and simulated in 180 nm CMOS technology. The simulation results show that by changing the two bias voltages of the proposed filter, its bandwidth can be changed according to the frequency range of ADSL, ADSL2, and ADSL2+ communication standards and it effectively attenuates unwanted signals.
Electronics
Amirreza Solaymanpour; Shahbaz Reyhani
Abstract
The electrocardiogram is affected by various noises and one of the most important of which is 50 Hz power-line noise. On the other hand, it is necessary to use a battery in the portable device and so it requires the use of low power consumption circuits. Therefore, one of the challenges ahead when designing ...
Read More
The electrocardiogram is affected by various noises and one of the most important of which is 50 Hz power-line noise. On the other hand, it is necessary to use a battery in the portable device and so it requires the use of low power consumption circuits. Therefore, one of the challenges ahead when designing this type of device is the use of energy-saving filters with the ability to integrate devices and attenuate unwanted signals properly. This paper presents a low-power tunable sixth-order band-stop filter that does not need the off-chip capacitors. The filter structure is based on operational transconductance amplifiers (OTA) and integrated capacitors. Also, it is possible to change the central attenuation frequency of the proposed filter using bias voltage of the transconductance amplifiers. The proposed band-stop filter is designed and simulated in 180 nm CMOS technology at the transistor level. The simulation results show that the proposed filter can attenuate unwanted signals at 50 Hz by 102 dB while the maximum capacitance used in the filter is 54 pF. The power consumption of the proposed band-stop filter is 13.1 nW at a supply voltage of 1.8 V.