Electronics
Daniel Kwegyir; Francis Boafo Effah; Daniel Opoku; Peter Asigri; Yoosi Hayford; Eliezer Owusu Boateng; Kwaku Kessey-Antwi; Nana Maryam Abdul-Bassit Munagah; Kelvin Worlanyo Tamakloe
Abstract
Piezoelectric energy harvesting from air conditioner compressors is a promising technology for generating renewable electricity. This study comprehensively compares the energy harvesting potential derived from mechanical vibrations in compressors across various air conditioner brands, harnessing piezoelectric ...
Read More
Piezoelectric energy harvesting from air conditioner compressors is a promising technology for generating renewable electricity. This study comprehensively compares the energy harvesting potential derived from mechanical vibrations in compressors across various air conditioner brands, harnessing piezoelectric systems. Initially, a data collection system rooted in Internet of Things (IoT) technology is employed to capture vibration signals from different branded air conditioner compressors. The acquired data undergoes pre-processing and is subsequently analyzed in MATLAB Simulink to gauge its energy harvesting potential through a piezoelectric framework. Notably, the maximum voltage harvested demonstrated strong positive correlations with both the compressor vibrational frequency (0.7892) and velocity (0.7855), emphasizing their role in determining available mechanical energy for conversion to electrical power. Furthermore, a moderate positive correlation (0.0659) was observed between the harvested voltage and the compressor's rated power, indicating its influence on energy conversion. An additional positive correlation (0.2839) between temperature and harvested voltage was attributed to the increased electrical conductivity of compressor materials at higher temperatures. Conclusively, the compressor's frequency and velocity emerged as primary determinants of the maximum voltage harnessed, with rated power having a less pronounced yet contributory effect. This research provides valuable insights for optimizing energy harvesting from air conditioner compressors, highlighting the pivotal role of operational parameters.